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Chap. 1 THERMAL RADIATION AND PLANCK'S POSTULATE 2

1-1 INTRODUCTION

At a meeting of the German Physical Society on Dec. 14, 1900, Max Planck read his
paper, “On the Theory of the Energy Distribution Law of the Normal Spectrum.”
This paper, which first attracted little attention, was the start of a revolution in phys-
ics. The date of its presentation is considered to be the birthday of quantum physics,.
although it was not until a quarter of a century later that modern quantum mechan-
ics, the basis of our present understanding, was developed by Schroedinger and
others. Many paths converged on this understanding, each showing another aspect
of the breakdown of classical physics. In this and the following three chapters we
shall examine the major milestones, of what is now called the old quantum theory, that
ted to modern quantum mechanics. The experimental phenomena which we shall
discuss in connection with the old quantum theory span all the disciplines of classical
physics: mechanics, thermodynamics, statistical mechanics, and electromagnetism.
Their repeated contradiction of classical laws, and the resotution of these conflicts on
the basis of quantum ideas, will show us the need for quantum mechanics. And our
study of the old quantum theory will allow us to more easily obtain a deeper under-
standing of quantum mechanics when we begin to consider it in the filth chapter.

As is true of relativity (which is treated briefly in Appendix A), quantum physics
represents a generalization of classical physics that includes the classical laws as spe-
cial cases. Just as relativity extends the range of application of physical laws to the
region of high velocities, so quantum physics extends that range to the region of small
dimensions. And just as a universal constant of fundamental significance, the velocity
of light ¢, characterizes relativity, so a universal constant of fundamental significance,
now called Planck’s constant h, characterizes quantum physics. It was while trying to
explain the observed properties of thermal radiation that Planck introduced this con-
stant in his 1900 paper. Let us now begin to examine thermal radiation ourselves. We
shall be led thereby to Planck’s constant and the exiremely significant related
quantum concept of the discreteness of energy. We shall also find that thermal radia-
tion has considerable importance and contemporary relevance in its own right. For
instance, the phenomenon has recently helped astrophysicists decide among compet-
ing theories of the origin of the universe. Another example is given by the rapidly

developing technology of solar heating, which depends on the thermal radiation
received by the earth from the sun, '

1-2 THERMAL RADIATION

The radiation emitted by a body as a result of its temperature is cailed thermal
radiation. All bodies emit such radiation to their surroundings and absorb such radia-
tion from them. Il a body is at first hotter than its surroundings, it will cool off be-
cause its rate of emitting energy exceeds its rate of absorbing energy. When thermal
equilibrium is reached the rates of emission and absorption are equal.

Matter in a condensed state {i.e., solid or liquid) emits a continuous spectrum of
radiation. The details of the spectrum are almost independent of the particular mate-
rial of which a body is composed, but they depend strongly on the temperature. At
ordinary temperatures most bodies are visible to us not by their emitted light but by
the light they reflect. If no light shines on them we cannot see them. At very high
temperatures, however, bodies are self-luminous. We can see them glow in a darkened
room; but even at temperatures as high as several thousand degrees Kelvin well over
90%, of the emitted thermal radiation is invisible to us, being in the infrared part of
the electromagnetic spectrum, Therefore, self-luminous bodies are quite hot.

Consider, for example, heating an iron poker to higher and higher temperatures
in a fire, periodically withdrawing the poker from the fire long enough to observe its
properties. When the poker is still at a relatively low temperature it radiates heat, but
it is not visibly hot. With increasing temperature the amount of radiation that the
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poker emits increases very rapidly and visible effects are noted. The poker assumes a
dull red color, then a bright red color, and, at very high temperatilres, an intense
blue-white color. That is, with increasing temperature the body emits more thermal
radiation and the frequency of the most intense radiation becomes higher.

The relation between the temperature of a body and the {requency spectrum of the
emitted radiation is used in a device called an optical pyrometer. This is essentially a
rudimentary spectrometer that aliows the operator {0 estimate the temperature of a
hot body, such as a star, by observing the color, or frequency composition, of the
thermal radiation that it emits. There is a continuous spectrum of radiation emitted,
the eye seeing chiefly the color corresponding to the most intense emission in the
visible region. Familiat examples of objects which emit visible radiation include hot
coals, lamp filaments, and the sun.

Generally speaking, the detatled form of the spectrum of the thermal radiation
emitted by a hot body depends somewhat upon the composition of the body. How-
ever, experiment shows that there is-one class of hot bodies that emits thermal spectra
of a universal character. These are called Blackbodies, that is, bodies that have sur-
faces which absorb ail the thermal radiation incident upon them. The name is ap-
propriate because such bodies do not reflect light and appear black when their tem-
peratures are low enough that they are not seli-luminous. One example of a {nearly)
blackbody would be any object coated with a diffuse layer of black pigment, such as
famp black or bismuth black. Another, quite different, example will be described
shortly. Independent of the details of their composition, it is found that all black-

bodies at the same temperature emit thermal radiation with the same spectrum. This
general fact can be understood on the basis of classical arguments involving thermo-
dynamic equilibrium. The specific form of the spectrum, however, cannot be obtained
from thermodynamic arguments alone. The universal properties of the radiation
emitted by blackbodies make them of particular theoretical interest and physicists
sought to explain the specific features of their spectrum.

The spectrat distribution of blackbody radiation is specified by the quantity R{v),
called the spectral radiancy, which is defined so that Ry(v)dv is equal to the energy
emitted per unit time in cadiation of frequency in the interval v to v+ dv from a unit
area of the surface at absolute temperature T. The carliest accurate measurements of
this quantity were made by Lummer and Pringsheim in 189%. They used an instru-
ment essentially similar to the prism spectrometers used in measuring optical spectra,
except that special materials were required for the lenses, prisms, efc., sO that they
would be transparent to the relatively tow [requency thermal radiation. The experi-

q;gh_taﬂjf_ pbs’e)rvéd dependence of R{v) on v and T is shown in Figure 1-1.

Distribution functions, of which spectral radiancy is an example, are very common in physics.
For example, the Maxwellian speed distribution function {which looks rather like one of the
curves in Figure 1-1} tells us how the molecules in a gas at a fixed pressure and temperature
are distributed according to their speed. Another distribution function that the student has
probably already seen is the one {which has the form of a decreasing exponential} specifying
the times of decay of radioactive nuclei in a sample containing nuclei of a given species, and
he has certainly seen a distribution function for the grades received on 2 physics exam.

“The spectral radiancy distribution function of Figure -t for a blackbody of a given area
?md a particular temperature, say 1000°K, shows us that: (1) there is very little power radiated
in a frequency interval of fixed size dv if that interval is at a frequency ¥ which is very small
f:ompared to 10'% Haz. The power is zero for v equal to zero. {2) The power radiated in the
iiterval dv increases rapidly as v increases from very small values. (3) It maximizes for a
vajue of v =~ 1.1 % 10t* Hz. That is, the radiated power is most intense at that frequency.
{4) Above = 1.1 x {0'* Hz the radiated power drops slowly but continuously as v increases.
It is zero again when v approaches infinitely targe values.

.The two distribution functions for the higher values of temperature, 1500°K and 2000°K.,
displayed in the figure show us that (5) the frequency at which the radiated power is most

i
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Flgure 1-1 The spectral radiancy of a blackbody radiator as a function of
of radiation, shown for temperatures of the radiator of 1000°K, 1500°
that the frequency at which the maximum radiancy occurs [dashed tine} increases linearly
with Increasing temperature, and that the total power emitted per square meter of the
radiator {area u‘r{ger curve} increases very rapidly with temperature.

the frequency
K, and 2000°K. Note

intense increases with increasing tem

perature. Inspection will verify that this frequency in-
creases linearly with temperature. {6)

The total pawer radiated in all frequencies increases with
increasing temperature, and it does so more rapidly than linearly. The total power radiated
at 4 particular temperature is given simply by the area under the curve for that temperature,
(& Rr(¥)dv, since Rr(v)dv is the -power radiated in the frequency interval from v to v + dv.

The integral of the spectral radiancy R {v) over alt v is the total energy emitted

per unit time per unit area from a blackbody at temperature T. It is called the
radiancy Ry. That is

«©

R, = J. Ry(v)dy (1-1)
) .
As we have seen in the preceding discussion of Figure 1-1, Ry increases rapidly with

increasing temperature. In fact, this result js called Stefan’s law, and it was first stated
in 1879 in the form of an empirical equation

R, =oT* (1-2)
where
o =567 x 107% W/m?2.°K*+
is called the Stefan-Boltzmann constant. Figure 1-1 also shows us that the spectrum
shifts toward higher frequencies as T increases. This result is calted Wien’s displace-
ment law

Vmax T (1'33)

where v, is the frequency v at which Ry(v) has its maximum value for a partic-
ular T. As T increases, v, is displaced toward higher frequencies. All these resuits
are in agreement with the familiar experiences discussed earlier, namely that the
amount of thermal radiation emitted increases rapidly (the poker radiates much more
heat energy at higher temperatures), and the principal frequency of the radiation

becomes higher (the poker changes color from dull red to blue-white), with increasing
temperature,

E
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Figure 1-2 A cavity in a body connected by a small
hole to the outside. Radiation incident on the hole is
completely absorbed after successive reflections on
the inner surtace of the cavity. The hole absorbs like
a‘blackbody. In the reverse process, in which radiation
teaving the hole is built up of contributions emitted
from the inner surface, the hole emits like a blackbody.

Another example of a blackbody, which we shall see to be particularly important,
can be found by considering an object containing a cavity which is connected to the
outside by a small hole, as in Figure 1-2. Radiation incident upon the hole from
the outside enters the cavity and is reflected back and forth by the walls of the
cavity, eventually being absorbed on these walls. If the area of the hole is very small
compared to the area of the inner surface of the cavity, a negligible amount of the
incident radiation wilt be reflected back through the hole. Essentially all the radia-
tion incident upon the hole is absorbed; therefore, the hole must have the properties of
the surface of a blackbody. Most blackbodies used in laboratory experiments are
constructed along these lines.

Now assume that the walls of the cavity are uniformly heated to a temperature
T. Then the walls will emit thermal radiation which will fill the cavity. The small
fraction of this radiation incident from the inside upon the hole will pass through

the hole. Thus the hole will act as an emitter of thermal radiation. Since the hole
must have the properties of the surface of a blackbody, the radiation emitted by
the hole must have a blackbody spectrum; but since the hole is merely sampling
the thermal radiation present inside the cavity, it is clear that the radiation in
the cavity must also have a blackbody spectrum. In fact, it will have a blackbody
spectrum characteristic of the temperature T on the walls, since this is the only
temperature defined for the system. The spectrum emitted by the hole in the cavity
is specified in terms of the encrgy flux Rq(v). It is more useful,-however, to specify
the spectrum of radiation inside the cavity, called cavity radiation, in terms of an
energy density, p4{v), which is defined as the energy contained in a unit volume
of the cavity at temperature T in the [Tequency interval v to v + dv. It is evident
that these quantities are proportional to one another; that is
priv) oc Ry (v) (1-4
Hence, the radiation inside a cavity whose walls are at temperature T has the
same character as the radiation emitted by the surface of a blackbody at temper-
ature T. It is convenient experimentally to produce a blackbody spectrum by means
of a cavity in a heated body with a hole to the outside, and it is convenient in theo-
retical work to study blackbody radiation by analyzing the cavity radiation because
it is possible to apply very general arguments to predict the properties of cavity
radiation.

Example 1-1. {a) Since iv = ¢, the constant velocity of light, Wien's displacement law (l-3a}

can also be put in the form

{i-3b)
where 1, is the wavelength at which the spectral radiancy has its maximum value for a
particular temperature 7. The experimentally determined value of Wien's constant is 2.898 x
10~ m-°K. If we assume that stellar surfaces behave like blackbodies we can get a good
estimate of their temperature by measuring d,,,. For the sun 4,,, = 5100 A, whereas for the
North Star A, = 3500 A. Find the surface temperature of these stars. {One angstrom =

~xl A = iO—LO m‘)

Aqax T = const
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B For the sun, T = 2898 x 1072 m K /5100 x 1010
T=2898 %10 *m"K/3500 x 1019 1y = 8300°K,

At 5700°K the sun's surfice is near {
tion lies within the visible Fegion of the spectrum,

evolution our eyes have adapted to the sun to be
which it radiates most intensely.

m = 5700"K. For the North Star,
he temperature at which the grealest part of its radja-
This suggests that over the ages of human
come most sensitive 1o those wavelengths

<
(b} Using Stefan's law, (1-2), and the temperatures just obtained, determine the power ra-
diated from 1 cm? of stellur surface,
B For the sun ‘
Ry=0T" =567 % 1078 wyp2oxs (5700°K)*
=590 x 10" W/m? ~ 6000 W/cm?
For the North Star
Ry=0T* =567« 1p-8 W/m2oK* (8300°K)*
=271 x 10* W/m? ~ 27,000 W/em? <

Exampie 1-2. Assume we have two small opaque bodies & large distance from one another
supported by fine threads i

(1-3)
ay da

This relation, (1-5), is known as Kirchhoff's law for radiation,

B The equilibrium state is one

of constant temperature throughout the enclosed system, and
in that state the emission rate

necessarily equals the absorption rate for each body. Hence

e =ay and 2y =aq,
Therefore

2y €z

ay a;

If one body, say body 2, is a btackbody, then d; > a; because a blackbody is a better ab-
sorber than a non-blackbody. Hencs, it follows from (1-5) that €; > e;. The observed fact that
good absorbers are also good emitters is thus predicted by Kirchhoff's law, <

1-3  CLASSICAL THEORY OF CAVITY RADIATION

Shortly after the turn of the present century,
lation of the energy density of cavity {or blac
conflict between classical physics
to calculations that arise in cong
of solids) to be treated later, We
through the calculations we first

Rayleigh, and also Jeans, made a calcuy-
kbody) radiation that points up a serious
and experimental results. This calculation is similar
idering many other phenomena (e.g,, specific heats
present the details here, but as an aid in guiding us
outline their general procedure,
Consider a cavity with metallic walls heated uniformly to temperature T. The walls
emit electromagnetic radiation in the thermal range of frequencies. We know that

this happens, basically, because of the accelerated motions of the electrons in the
metallic walls that arise from therm i

terior of the cavity. Rayleigh and Je
magnetic theory is used to show t
the form of standing waves with n

ans proceeded as follows. First, classical electro-
hat the radiation inside the cavity must exist in
odes at the metallic surfaces. By using geometrical
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result of classical kinetic theory is used to calculate the average total ene'rgy of these
waves when the system is in thermal equilibrium. The average total energy depends,
in the classical theory, only on the temperature T. The number of standing waves in
the frequency interval times the average energy of the waves, divided by the volume
of the cavity, gives the average energy content per unit volume in the frequency in-
terval vto v + dv. This is the required quantity, the energy density p{v). Let us now do
it ourselves.

We assume for simplicity that the metallic-walled cavity filled with eleciromagnetic
radiation is in the form of a cube of edge length a, as shown in Figure I-3. Then
the radiation reflecting back and forth between the walls can be analyzed into three
components along the three mutuaily perpendicular directions defined by the edges
of the cavity. Since the opposing walls are parallel to each other, the three compo-
nents of the radiation do not mix, and we may treat them separately. Consider first
the x component and the metallic wall at x = 0. All the radiation of this component
which is incident upon the wall is reflected by it, and the incident and reflected waves
combine to form a standing wave. Now, since electromagnetic radiation is a trans-
verse vibration with the clectric field vector E perpendicular to the propagation direc-
tion, and since the propagation direction for this component is perpendicular to the
wall in question, its electric field vector E is parailel to the wall. A metallic wall
cannot, however, support an electric field parallel to the surface, since charges can
always flow in such a way as to neutralize the electric field, Therefore, E for this
component must always be zero at the wall. That is, the standing wave associated
with the x-component of the radiation must have a node {zero amplitude) at x = 0,
The standing wave must also have a node at x = a because there can be no parailel
electric field in the corresponding wall. Furthermore, similar conditions apply to the
other two components; the standing wave associated with the y component must have
nodes at y = 0 and y = g, and the standing wave associated with the z component
must have nodes at z = 0 and z = a. These conditions put a limitation on the possible

wavelengths, and therefore on the possible frequencies, of the electromagnetic radia-
tion in the cavity.

Flgure 1-3 A metailic walled cubical cavity filled with electromagnetic radiation, showing
three noninterfering components of that radiation bouncing back and forth belween the
walls and forming standing waves with nodes at each wall.
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Now we shall consider the que<=:zn o counting the number of standing waves
with nodes on the surfaces of the cz-:iy. whose wavelengths lie in the interval A to
4 + dA corresponding to the frequency interval v to v + dv. To focus attention on

the ideas involved in the calculatior. we shall first treat the x component alone; that

is, we shall consider the simplified. -2 actificial, case of a “one-dimensional cavity”

of length a. After we have worked t:rough this case, we shall see that the procedure
for gencralizing to a real three-dimezsional cavity is obvious.

The electric field for one-dimensi>nal electromagnetic standing waves can be de-
scribed mathematically by the funcion

E{x.tt = E. sin127ax/4) sin (27ve) {1-6)

where 1 is the wavelength of the wave. v is its frequency, and E, is its maximum
amplitude. The first two quantities are related by the equation

v=o/ (1-7)
where c is the propagation velocity of electromagnetic waves. Equation {1-6) repre-
sents a wave whose amplitude has the sinusoidal space variation sin (2nx/4} and
which is oscillating in time sinusoidally with frequency v like a simple harmonic

oscillator. Since the amplitude is obviously zero, at all times ¢, for positions satisfying
the refation

v a=0.1.2,3... {1-8) -

the wave has fixed nodes; that is. it is a standing wave. In order to-satisfy the re-
quirement that the waves have nodes at both ends of the one-dimensional cavity, we

choose the origin of the x axis to be at one end of the cavity (x = 0) and then require
that at the other end {(x =a)

2x/i =n forx=a (1-9)
where

n=12734,...

This condition determines a set of allowed values of the wavelength A. For these
allowed values, the amplitude patterns of the standing waves have the appearance
shown in Figure 1-4. These patterns may be recognized as the standing wave patterns
for vibrations of a string fixed at both ends, a real physical system which also satisfies
(1-6). In our case the patterns represent electromagnetic standing waves.

It is convenient to continue the discussion in terms of the allowed frequencies

instead of the allowed wavelengths. These frequencies are v = ¢/4, where 2a/i = n.
That is

v = cnf2a n=12734,.. . (1-10)

We can represent these allowed values of frequency in terms of a diagram consisting

of an axis on which we plot a point at every integral value of n. On such a diagram,

the value of the allowed frequency v corresponding to a particular value of » is, by

{1-10), equal to ¢/2a times the distance d from the origin to the appropriate point, or

~the distance 4 is 2a/c times the frequency v. These relations are shown in Figure 1-5,
Such a diagram is useful in calculating the number of allowed values in frequency

x=0 n=3 I=n

Figure 1-4 The amplitude patlerns of standing waves in a one-dimensional cavity with
walls at x = 0 and x = a, for the first three values of the index n.
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Flgure 1-5 The allowad values of the index n, which determines the allowed values of the
frequency, in a one-dimensional cavily of langth a.

range v to v + dv, which we call N(v)dv. To evaluate this quantity we S}mply count
the number of points on the n axis which fall between two limits \.vhlch are con-
structed so as to correspond to the frequencies v and v + dv, respectively. Since the
points are distributed uniformly along the n axis, it is apparent that t'hc number of
points falling between the two limits will be proportional to dv but will not dep!and
on v. In fact, it is easy to see that N(v)dv = (2afc)dv. However, we m.ust muitiply
this by an additional factor of 2 since, for each of the allowed frequencies, there are
actually two independent waves corresponding to the two possible states of polariza-

‘tion of electromagnetic waves. Thus we have

N(v}dv = i; dv {1-11)

This éompletes the calculation of the number of allowed standing waves for the arti-
ficial case of a one-dimensional cavity. ,

The above calculation makes apparent the procedures for extending the calcuig-
tion to the real case of a three-dimensional cavity. This extension is indicated in
Figure i-6. Here the set of points uniformly distributed at integral values along a
single n axis is replaced by a uniform three-dimensional array of points whose three
coordinates occur at integral vatues along each of three mutually perpgﬂdlcu?ar n
axes. Each point of the array corresponds to a particular allowed grce-dlmenstonal
fr

nz

iz
r={2afc}v

dr={2afe¢) dv

Flgure 1-6 The ailowed irequencies in a thrde-dimensional cavity in the form of a cub|e
of edge length a are determined by three indices n, Ny, Ny, which can each assume oniy

integral values. For clarity, only a few of the very many points corresponding to sets of
these indices are shown.
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standing wave. The integral values of n,, #,. and n, specified by each point give the
number ol nodes of the x. v, and z components, respectively, of the three-dimensional
wave. The procedure is equivalent to analyzing a three-dimensional wave {i.e., one
propagated in an arbitrary direction) into three one-dimensional component waves.
Here the number of aliowed frequencies in the frequency interval v to v + dv is equal
to the number of points contained between shells of radii corresponding to fre-
quencies v and v + dv. respectively. This will be proportional to the volume contained
beiween these two shells. since the points are uniformly distributed. Thus it is ap-
parent that N{v)dv will be proporticnal to v2 dv, the first factor, v2, being proportional
to the area of the shells and the second factor, dv, being the distance between them.
In the following example we shall work out the details and find

v
NV dy = 8:; v2 dy . (1-12)

where V = a’, the volume of the cavity.

Example 1-3. Derive (1-12), which gives the number of allowed -electromagnetic standing

waves in each frequency interval for the case of a three-dimensional cavity in the form of a
metallic-walled cube of edge length a,

P Consider radiation of wavelength 1 and frequency v = c/4, propagating in the direction de-
fined by the three angles «, §, v, as shown in Figure I-7. The radiation must be a standing
wave since all three of its components are standing waves. We have indicated the locations
of some of the fixed nodes of this standing wave by a set of planes perpendicular to the propa-
gation direction "8, y. The distance between these nodal planes of the radiation is just /2,

where 1 is its wavelength. We have also indicated the locations at the three axes of the nodes
of the three components. The distances between these nodes are

A2 = Af2cos a
442 = Af2cos B (1-13)
A:f2 = Aj2c0s v

Let us write expressions for the magnitudes at the three axes of the electric fields of the three
components. They are

E(x,t) = Eq_sin (2nx/1) sin (2nvt)
E(y) = Ey_sin (2my/d,) sin (2nvt)
E(z,t} = Eq, sin (2mz/4,) sin (Znve)

Y

—=

Figure 1-7 The nodal planes of a standing wave propagating in a certain diraction in a
cubical cavity.




ive the
1sional
e., one
waves,
s equal
to fre-
itained
t is ap-
yrtional
n them.

(1-12)

standing
orm of a

«ction de-
standing
locations
he propa-
5 just A/2,
the nodes

{1-13)

f the three

liraction in a

F

butthe angles «, §, y have the property

Thus

st i

The expression for the x component represents a wave with 2 maximum amplitude E4_, with
a space variation sin (2mx/1,), and which is oscillating with frequency v. As sin (21x/4,) is zeTo
for 2x/4, =0,1,2,3,..., the wave is a standing wave of wavelength 1, because it has fixed
nodes separated by the distance Ax = 1./2. The expressions for the y and z components repre-
sent standing waves of maximum amplitudes Eq_ and Eq, and wavelengths 1, and 1,, but alf
three component standing waves oscillate with the frequency v of the radiation. Note that
these expressions automatically satisly the requirement that the x component have a node at
x =0, the y component have a node at y = 0, and the z component have a node at z =0. To
make them also satisfy the requirement that the x component have a node at x = g, the y com-
ponent have a node at y = a, and the z component have a node at z = q, set

2xfi, =n, for x =a
2yfAy=n, fory=a
2zf4, = n, forz=a

where s, = 1,2,3,...in, = ,2,3,...:n,=1,2,3,.... Using (1-13), these conditions become
(2af2)-cos a = ny {2af8)cos B =1, (2afd) cos y = n,

' Squanngboth sides of these equations and adding, we obtain

(2a/)cos* a +cos® f +cos? Py =nd +nZ +ny

cos?a + cos? B+ cos?y = 1|

2a/d = Jnl + nf +n?

where a1, n,, n, take on all possible integral values. This equation describes the limitation on
the possible wavelengths of the electromagnetic radiation contained in the cavity.
We again continue the discussion in terms of the allowed frequencies instead of the allowed
- wavelengths, They are

€ ¢
v=—--w\/n§+n;’+n.§

1= 7 (1-1da)

" Now we shall count the number of allowed frequencies in a given frequency interval by
constructing a uniform cubic lattice in one octant of a rectangular coordinate system in such
“a way that the three coordinates of each point of the lattice are equal to a possible set of the
‘three integers n,, a,, n, (see Figure 1-6). By construction, each lattice point corresponds to an
allowed frequency. Furthermore, N{vidv, the numoer of allowed [requencies between v and
v + dv, is equal to N{r}dr, the number of points contained between concentric shells of radii r

and r + dr, where
_‘ r=\h1§+nf;+nf
From {1-14a), this is

2a

r=-—v (1-14b}
c

Since N{rjdr is equal to the volume enclosed by the shells times the density of lattice points,

and since, by construction, the density is one, N{r)dr is simply

gridr .
2

Setting this equal to N{v)dv, and evaluating r* dr from (1-14b), we have
b] 3
N{vidyv = E(£) vidy
2\ ¢

This completes the calculation except that we must multiply these resuits by a factor of 2
because, for each of the aliowed frequencies we have enumerated, there are actuaily two inde-
p-f:ndcnt waves corresponding to the two possible states of polarization of electromagnetic ra-
diation. Thus we have derived {1-12). It can be shown that N{v) is independenti of the assumed
-.shape of the cavity and depends only on its volume. <

H
Nirydr =§4nr1dr = (1-15)

ik

il
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Chap. 1 THERMAL RADIATION AND PLANCK'S POSTULATE

Note that there is a very significant difference between the resulis obiained for the
case of a real three-dimensional cavity and the results we obtained earlier for the
artificial case of a one-dimensional cavity. The factor of 2 found in (-12), but not in
(1-11), will be seen to play a fundamental role in the arguments that folfow. This factor
arises, basically, because we live in a three-dimensional world—the power of y being
one less than the dimensionality. Although Planck, in ultimately resolving the serious
discrepancies between classical theory and experiment, had to question certain points
which had been considered to be obviously true, neither he nor others working on the
problem questioned (£-12). Tt was, and Tremains, generally agreed that (1-12) is valid.

We now have a count of the number of standing waves, The next step in the

Ray-
leigh-Jeans classical theory of blackbod i

constant E,. However, for a system containing a large number of physical entities of
the same kind which are in thermal equilibrium with each other at temperature T,
classical physics makes a very definite prediction about the average valyes of the
energies of the entities. This applies to our case since the mulititude of standing waves,
which constitute the thermal radiation inside the cavity, are entities of the same kind
which are in thermal equitibrium with each other at the temperature T of the walls

» therefore, the different standing
as required to maintain equitibrium,
The prediction comes from classical kinetic theory, and it is called the law of equi-

partition of energy. This-law states that for a system of gas molecules in thermat
equilibrium at temperature T, the average kinetic energy of a molecule per degree of
freedom is kT/2, where k — 1.38 x 10723 joule/°K is cailed Boltzmann’s constant. The
law actually applies to any classical system containing, in equilibrium, a large number
of entities of the same kind. For the case at hand the entities are standing waves
which have one degree of freedom, their electric field amplitudes. Therefore, on the

& =kT
The most important point to note is that the avera
to have the same value for all standing waves in t
frequencies.
The energy per unit volume in the frequency interval v to v +dvo
spectrum of a cavity at temperature T s Just the product of the ave

quency interval, divided
we therefore finally obtain-the

(i-16)
ge tofal energy & is predicted
he cavity, independent of their

f the blackbody

resulit

2
o2 () dy = Snvsde

v {1-17

This the Rayleigh-Jeans formula for blackbod y radiation,
In Figure 1- i
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Flgure 1-8 The Rayleigh-Jeans prediction {dasnhed fine} comparad with the expe.rimenl_al
results {sofid line) for the energy density of a blackbody cavity, showing the serious dis-
crepancy called the ultraviolet catastrophe.

remains finite, as it obviously must, and, in fact, that the energy density goes to zero
at very high frequencies. The grossly unrealistic behavior of the prediction of classical
theory at high frequencies is known in physics as the “uitraviolet catastrophe.” This
term is suggestive of the importance of the failure of the theory.

1-4 PLANCK'S THEORY OF CAVITY RADIATION

In trying to resolve the discrepancy between theory and experiment, Planck was led
to consider the possibility of a violation of the taw of equipartition of energy on which
the theory was based. From Figure 1-8 it is clear that the law gives satisfactory results
for small frequencies. Thus we can assume

B &= kT (1-18)

that ig;:_the’ average total energy approaches kT as the frequency approaches zero. The
epancy-at high. frequencies could be eliminated if there is, for some reason, a
g

F-—0 . (1-19)
~that is, if the average total energy approaches zero as the frequency approaches in-
finity. In other words, Planck realized that, in the circumstances that prevail for the
case of blackbody radiation, the average energy of the standing waves is a function of
frequency &(v) having the properties indicated by (1-18) and (1-19). This is in contrast
to the law of equipartition of energy which assigns to the avcrage encrgy & a value
independent of frequency.

Let us look at the origin of the equipartition law. 1t arises, basically, from a more
comprehensive result of classical statistical mechanics called the Boltzmann distribu-
tion. {(Arguments leading to the Boltzmann distribution are given in Appendix C for
students not already familiar with it.) Here we shall use a special form of the Boltzmann
distribution

- &/kT

kT

in which P(£)d¢& is the probability of finding a given entity of a system with energy
in the interval between & and & + d&, when the number of energy states for the
entity in that interval is independent of &. The system is supposed to contain 2 large

P(&) = (1-20)
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aumber of entities of the same kin
represents Boltzmann's constang s in the system we gre

considering, & set pf simple harmonic oscillating Standing waves in thermai equilib-
rium in g blackbody cavity, are governed by (1-20.

d in thermal cquitibrium at temperature T, and k&
The energies of the entiticy

Maxwell distribution. The fastor of £ 1y, 3
Maxwel] distribution results from the ci

malecule in the interval & tod + dé is not tndependent of & but instead increases in Proportion
to &2,

. including, of course, the average value & of the
energies. The latter quantity can be obtajned from P(#) by using (1-20) to evaluate
the integrals in the ratio

_ (1-21)

The integrand in the numerator is the energy, &, weighted by the probability that the

y. By integrating over ai? possible energies, the
average value of the energy is obtained. The denominator is the probabitity of finding

value one; it does. The integral in

from P(4),

Planck’s great contribution came when he realized that he could obtain the re-
quired cutoff, indicated in (1-19), if he modified the calculation leading from P(&) to
& by treating the energy & as if it were a discrete variable instead of as the continuous
variable that it definitely is from the point of view of classical physics. Quantitatively,
this can be done by rewriting (1-21) in terms of a sum instead of an integral, We
shall soon see that this iS not too hard to do, but it will be much more instructive
for us to study the graphical presentation in Figure 1-[0 first.

£ =0, Ag, 2A8,3A¢, 4A¢, . .. (1-23)

as the set of allowed vajyes of the energy. Here A# is the uniform interval be
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EPE) —=
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Figure 1-9 Top: A plot of the Boltzmann probabitity distribution P(&) = e ~**T/kT. The aver-
age value of the energy & for this distribution is & = k7, which is the classical law of
equipartition of energy. To calculate this value of &, we integrate £P{&) from zero to
infinity. This is just the quantity that is being averaged, &, multiptied by the relative prob-
ability P{&£) that the value of & will be found in a measurement of the energy. Bottom: A
plot of #P{&£). The area under this curve gives the value of &,

successive allowed values of the energy. The top part of Figure 1-10 itlustrates an

.evaluation of & from P(&), for a case in which A& « kT. In this case the result

obtained is & =~ kT. That is, a value essentially equal to the classical4tesult is obtained
here since the discreteness Ad is very small compared to the energy range kT in
which P(&) changes by a significant amount; it makes no essential difference in this
case whether & is continuous or discrete. The middle part of Figure 1-10 illustrates
the case in which A& ~ kT, Here we find & < kT, because most of the entities have
energy & = 0 since P{&) has a rather small value at the first allowed nonzero value
A& so & = 0 dominates the calculation of the average value of & and a smaller resuit
is obtained. The eflect of the discreteness is seen most clearly, however, in the lower
part of Figure 1-10, which illustrates a case in which A€ » kT. In this case the prob-
ability of finding an entity with any of the allowed energy values greater than zero is
negligible, since P(¢£) is extremely small for all these values, and the resuit obtained
is & « kT. '

Recapitulating, Planck discovered that he could obtain & ~ kT when the difference
in adjacent energies A4 is small, and & =~ 0 when A¢ is large. Since he needed to
obtain the first result for small values of the frequency v, and the second result for
large values of v, he clearly needed to make A& an increasing function of v. Numerical
work showed him that he could take the simplest possible relation between A& and
v having this property. That is, he assumed these quantities to be proporiional

A ey {1-24)
Written as an equation instead of a proportionality, this is
AE = hy {1-25)

where h is the proportionality constant.
Further numerical work allowed Planck to determine the value of the constant h
by finding the value which produced the best fit of his theory with the experimentaj
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is always of zero height, This will make a large
Tectangies are large,

data. The value he obtained was very close to the currently accepted value
h = 6.63 x 10~ joule-sec

This very famous constant js now called Planck’s constant.

The formula Planck obtained for & by evaluating the summatjon analogous to
the integral in (1-21), and that we shall obtain in Example 1-4,is

hy
S (1-26

Since ™7 5 | 4 hyiT for hv/kT — 0, we sec that F(v) -
by (1-18). In the limit hv/kT - o, hvikT
prediction of {1-19).

The formula which he then immediately obtained for the energy density in the
blackbody Spectrum, using his result for &(v) rather than the classical value & = kT,

&v) =

kT in this limit as predicted
= @, and #(v) - 0, in agreement with the
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grv? hy

pT(V] dv = ‘-CT' -em,r—_"*i dv (i*l?)

This is Planck’s blackbody spectrum. Figure 1-11 shows a comparison of this result
of Planck’s theory (expressed in terms of wavelength) with experimental results for a
temperature T = 1595°K. The experimental results are in complete agreement with
Planck’s formula at all temperatures.

We should remember that Planck did not alter the Boltzmann distribution, “Aif”
he did was to treat the energy of the electromagnetic standing waves, oscillating
sinusoidally in time, as a discrete instead of a continuous quantity.

Example 1-4. Derive Planck’s expression for the average energy & and also his blackbody
spectrum.
B The quantity & is evaluated from the ratio of sums

Y, P&
&= a=p
Y, P
n=4¢ .
analogous to the ratio of integrals in {L-2{}. Sums must be used because with Planck’s postulate

the energy & becomes a discrete variable that takes on only the values & =0, by, 2hv, 3hv, .. ..

That is, & = nhy where n =0, 1, 2, 3,.... Evaluating the Boitzmann distribution P{&) =
e " *TILT, we have

2 nmhy e © _
¥ ,_k"'f'e ah/kT T o™
— T

- v
r§="w° =kT2=2 where @ =~
Z 'mk__e—-nhvjk]' E g ne kT
=0 kT n=0
This, in turn, can be cvaluated most gasily by noting that
Aai i e” " - OED: «:!tit—:‘A"al § s ™
i —nx dmn=0 n=0 du ,|=(‘);$.A
—a—1In Y &M= = = = =17
da = z o z Pt z e ™
=9 n=0 =0
T i
1.75— 22 ! ‘ [ —]
_ 1801 -
E T = 1595°K
"= 125k
=
a §
2 100
E
=075
<
£
* 050
025—
i I | | ! |
0 2 ! 5
A0t A
Flgure 1-11

Planck's energy density prediction {solid line) compared to the experimentai
rasuits {circles) for the enargy density of a blackbody. The data wara reported by Coblantz
in 1916 and apply 1o a temperature of 1585°K. The author remarked in his paper that after
drawing the spectral energy curves resuiting from his measuremsants, “owing to eya fatigue
it was impossibie for months thereafter to give attention to the reduction of the data.” The
data, whan finally reduced, ted to a value for Planck’'s constant of 6.57 x 107 ** jouie-sac.
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We have derived (1-26) for the average energy of an electromagnetic standing wave of fre-

quency v. Multiplying this by (I-12), the number N{v}dy of waves having this frequency derived
in Example 1-3, we immediately obtain {he Planck blackbody spectrum, {1-27), |

Exampie 1-5. [t jg convenient in analyzing experimental results, as in Figure 1-11, to
express the Planck blackbody spectrum in terms of wavelength 1 rather than frequency v. Ob-
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If now we set v = ¢/A in (1-27) for pz{v) we obtain

©
3nhe dA N
pT(l)dl:TW {1-251 %’
In Figure 1-12 we show p7(1) versus for severat different temperatures. The trend from “red ¥

heat” to “white heat” to “blue heat” radiation with rising temperatures becomes clear as the
distribution of radiant energy with wavelength is studied for increasing temperalures. 4

¢ =t Stefan’s law, (1-2), and Wien’s displacement taw, {1-3), can be derived [rom the
Planck formula. By fitting them to the experimental results we can determine values
of the constants h and k. Stefan’s law is obtained by integrating Planck’s law aver
the entire spectrum of wavelengths. The radiancy is found to be proportional o the
fourth power of the temperature, the proportionality constant 2 k*/15¢%h? being
identified with o, Stefan’s constant, which has the experimentally determined value
567 x 1078 W/m-°K* Wien's displacement law is obtained by setting dp(A)/di = 0.
We find A, T = 0.201dhc/k and identify the right-hand side of the equation with
Wien's experimentally determined constant 2898 x 1073 m-"K. Using these (wo
measured values and assuming a value for the speed of light ¢, we can calculate the
values of h and k. Indeed, this was done by Planck, his values agreeing very well with
those obtained subsequently by other methods.

e of fre-
/ derived

< 1.5 THE USE OF PLANCK'S RADIATION LAW IN THERMOMETRY
1-1L, to | The radiation emitted from a hot body can be used to measure its temperature. I tatal
3y v. Ob- £ radiation is used, then, from the Stefan-Boltzmann law, we know that the energies emitted by
m of the ; two sources are in the ratio of the fourth power of the temperature. However, it is difficult to
inus sign measure total radiation from most sources so that we measure instead the radiancy over a

AHIAWOWHIHL NI MY NOLLYIAQYH S.%ONV1d 40 380 FHL §

igns. {An finite wavelength band. Here we use the Planck radiation law which gives the radiancy as a
function of temperature and wavelength. For monochromatic radiation of wavelength 2 the

;atio of the spectral intensities emitted by sources at T,°K and T °K is given from Planck’s
‘taw as

eﬁc.’Ale _ 1

T g

If T, is taken as a standard reference temperature, then T, can be determined relative to the
'_st_a_ngﬁg\fggm this expression. by measuring the ratio experimentally. This procedure is used
in_the Intgrnational Practical Temperature Scale, where the normal melting point of goid is
ta s}hé standard fixed point, 1068°C.. That is, the primary standard optical pyrometer is
‘arranged fo compare the spectrat radiancy from a blackbody at an unknown temperature
.'T 57 1068°C-with a blackbody at the gold point. Procedures must be adopted, and the theory
developed, to allew for the practical circumstances that most sources are not blackbodies and
i that a fnite spectral band is used instead of monochromatic radiation.
: Most optical pyrometers use the eye as a detector and call for a large spectral bandwidth so
. that there will be enough energy for the eye to see. The simplest and most accurate type of
. instrument used above the gold point is the disappearing filament optical pyrometer {see Fig-
ure 1-13). The source whose temperature is to be measured is imaged on the filament of the

Objective Pyrometer Microscope
lens —_———
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pyrometer lamp, and the current in the lamp is varied until the fi
int the background of the source image. C
insure accurale measurement of lemperature.

A particularly interesting example in the general category of thermometry using blackbody
radiation was discovered by Dicke, Penzias, and Wilson in the 1950s. Using a radio telescope
operating in the several millimeter to several centimeter wavelength range, they found that a
blackbody spectrum of electromagnetic radiation, with a characteristic temperature of about
YK, is impinging on the earth with equal intensity from all directions. The unilormity in
dircetion indicates that the radiation fitls the universe uniformly. Astrophysicists consider these
medsurements as strong evidence in favor of the so-called big-bang theory, in which the universe

was in the form of a very dense, and hot, fireball of particles and radiation around 10'°
ago. Due to subsequent exp

lament seems (o disappear
arcful calibration and precision potentiomelers

years
ansion and the cesuiting Doppler shift, the temperature of the
radiation would be expected to drop by now ta something like the observed value of 3°K.

1-6  PLANCK’S POSTULATE AND ITS IMPLICATIONS

Planck’s contribution can be stated as a postulate, as follows: .-

Any physical entity with one degree of freedom whose “coordinate” is a sinusoidal
function of time (ie., executes simple harmonic oscillations) can possess only total
energies & which satisfy the relation

& = nhy n=0,1,2,3,...
where v is the frequency of the oscillation, and h is a universal constant.

The word coordinate is used in its general sense to mean any quantity which
describes the instqmtaneous condition of the enity. Examples are the length of a coil
spring, the angular position of a pendulum bob, and the amplitude of a wave, All
these examnples happen also to be sinusoidal functions of time.

An energy-level diagram, as shown in Figure 1-14, provides a convenient way of
illustrating the behavior of an entity governed by this postulate, and it is also useful
in contrasting this behavior with what would be expected on the basis of classical
physics. In such a diagram we indicate each of the possible energy states of the entity!
with a horizontal line. The distance from the line to the Zero energy line is propor-
tional to the total energy to which it corresponds. Since the entity may have any
energy from zero to infinity according to classical physics, the classical energy-level
diagram consists of a continuum of fines extending from zero up. However, the entity
executing simple harmonic oscillations can have only one of the discrete total energies
€ =0, hv, 2hv, 3hv . . . il it obeys Planck’s postulate. This is indicated by the discrete
set of lines in its energy-level diagram. The energy of the entity obeying Planck’s
postulate is said to be quantized, the allowed energy states are called quantum states,
and the integer n is called the guantum number.

It may have occurred to the student that there are physical systems whose behavior
seems to be obviously in disagreement with Planck’s postulate, For instance, an ordi-

| |

& = Shy

&= dhy

&= 3y

&= 2hy

& =hy

Classical =0 Planck ¢=0

Figure 1-14 Left: The allowed anergies in a classical system, oscillating sinusocidally with
frequency v, are continuously distributed. Right: The aliowed energies according to
Planck’s postulate are discretely distributed since they can only assume the values nhy.

We say that the energy is quantized, n being the quantum number of an allowad quantum
slate.
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nary pendulum executes simple harmonic oscillations, and yet this system ceetainly
appears to be capable of possessing a continuous range of energies. Before we accept
this argument, however, we should make some simple numerical calculations con-

cerning such a system.

Example 1-6. A pendutum consisting of a 0.01 kg mass is suspended from a string O.i m
in length. Let the amplitude of its oscillation be such that the string in its extreme positions
makes an angle of 0.1 rad with the vertical. The energy of the pendulum decreases due, for
instance, to frictional effects. Is the energy decrense observed to be continuous or dis-

continuous?
B The oscillation frequency of the pendulum is

2
v:_l_ gz_l_ M:l.ﬁ/sec
e\ 2Im 0.lm

The energy of the pendulum is its maximum potential energy
mgh = mgl{l -— cos 0) = 0.01 kg x 9.8 m/sec® x 0.0 m x {1 —cos0.1)
=5x 1077 joule N
The energy of the pendulum is quantized so that changes in energy take place in discontinuous
jumps of magniiude AE = hv, but
AE = hv = 6.63 x 107 % joule-sec x L.6/sec = 10723 joule
" whereas E =5 % 10~ 7 joule. Therefore, AE[E =2 % 10729, Hence, to measure the discrete-

ness in the encrgy decrease we need to measure the energy to better than two parts in 102 Ttis

apparent that even the most sensitive experimental equipment is totaily incapable of this energy

resolution. «

We conclude that experiments involving an ordinary pendulum cannot determine
whether Planck’s postulate is valid or not. The same is true of experiments on ali
other macroscopic mechanical systems. The smaliness of h makes the graininess in the
energy too fine to be distinguished from an energy continuum. Indeed, k might as well
be zero for classical systems and, in fact, one way to reduce quantum formulas to
their classical limits would be to let h — 0 in these formulas. Only where we con-
sider systems in which v is so large and/or & is so small that A& = hv is of the order

of & are we in a position to test Planck’s postulate. One example is, of course, the
_high-frequency standing waves in blackbody radiation. Many other examples will be
“considered in following chapters. '

-1-7- A-BIT OF QUANTUM HISTORY
~In its original form, Planck’s postuiaté was not so far reaching as it is in the form we have
‘given, Planck’s initial work was done by treating, in detail, the behavior of the electrons in the
walls of the blackbody and their coupling to the electromagnetic radiation within the cavity.
This coupling leads to the same factor v2 we obtained in {1-12) from the more general arguments
due to Rayleigh and Jeans. Through this coupling, Planck related the energy in a particular
.../ frequency component of the blackbody radiation to the energy of an electron in the wall oscil-
lating sinusoidally at the same frequency, and he postulated only that the energy of the
oscillating particle is quantized. It was not until later that Planck accepted the idea that the
oscillating electromagnetic waves were themselves quantized, and the postulate was broadened
to include any entity whose single coordinate oscillates sinusoidally.
At first Planck was unsure whether his introduction of the constant h was only a mathemat-
ical device or a matter of deep physical significance. In a letter to R. W. Wood, Planck called

his limited postulate “an act of desperation.” “1 knew,” he wrote, “that the problem {of the
equilibrium of matter and radiation) is of fundamental significance for physics; [ knew the
formula that reproduces the energy distribution in the normal spectrum; a theoretical interpre-
tation had to be found at any cost, no matter how high.” For more than a decade Planck
- .. tried to fit the quantum idea into classical theory. With each attempt he appeared to retreat
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from his original holdness, but always he gencrated new ideas and techniques that quantum
theory later adopted. What appears to have finally convinced him of the correctness and deep
significance of his quantum hypothesis was its support of the definiteness of the statistical
concept of entropy and the third law of thermodynamics.

It was during this period of doubt that Planck was editor of the German research journal
Annaler der Physik, In 1905 he received Einstein’s first relativity paper and stoutly defended
Einstein's work. Thereafter he became one of young Einstein's patrons in scientific circles, but
he resisted for some time the very ideas on the quantum theory of radiation advanced by
Einstcin that subsequently confirmed and extended Planck’s own work. Einstein, whose deep
insight into electromagnetism and statistical mechanics was perhaps unequalied by anyone at
the time, saw as a result of Planck’s work the need for a sweeping change in classical statistics
and electromagnetism. He advanced predictions and interpretations of many physical phe-
nomena which were later strikingly confirmed by experiment. In the next chapter we turn to
one of these phenomena and foltow another road on the way to quantum mechanics.

QUESTIONS

1. Does a blackbody always appear black? Explain the term blackbody.

2. Pockets formed by coals in a coal fire seem brighter than the coals themselves. s the tem-
perature in such pockets appreciably higher than the surface temperature of an exposed
glowing coal?

3. 1i welook into a cavity whose walls are kept at a constant temperature no details of the
interior are visible. Explain,

4. The relation Ry = aT* is exact for blackbodies and holds for ail temperatures. Why is
this relation not used as the basis of a definition of temperature at, for instance, 100°C?

3. A piece of metal glows with a bright red color at 1100°K. At this temperature, however,
a piece of quartz does not glow at all. Explain, (Hint: Quartz is transparent to visible
light)

6. Make a list of distribution functions commonly used in the social sciences {e.g, distribu-
tion of families with respect to income). In each case, state whether the variable whose
distribution is described is discrete or continuous.

7.

In (1-4) relating spectrat radiancy and energy density, what dimensions would a propor-
tionality constant need to have?

8. What is the origin of the ultraviolet catastrophe?

The law of equipartition of energy requires that the specific heat of gases be independent
of the temperature, in disagreement with experiment. Here we have seen that it leads to
the Rayleigh-Jeans radiation law, also in disagreement with experiment, How can you
relate these two failures of the equipartition law?

10. Compare the defnitions and dimensions of spectral radiancy R {v), radiancy Ry, and

energy density p{v).

L1. Why is optical pyrometry commonly used above the gold point and not below it? What
objects typically have their temperatures measured in this way?

12, Are there quantized quantities in classical physics? s energy quantized in classical
physics?

13, Does it make sense to speak of charge quantization in physics? How is this different from
energy quantization?

14.  Elementary particles seem Lo have a discrete set of rest masses. Can this be regarded as
quantization of mass?

15. In many classical systems the allowed frequencies are quantized. Name some of the Sys-
tems. Is energy quantized there too?

16. Show that Planck’s constant has the dimensions of angular momentum. Does this neces-
sarily suggest that angular momentum is a quantized quantity?

17.

For quantum effects to be everyday phenomena in our lives, what would be the minimum
order of magnitude of h?
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8. What, if anything, does the 3°K universal blackbody radiation tell us about the tempera-
ture of outer space?

19. Does Planck's theory suggest quantized atomic energy states?

20, Discuss the remarkable fact that discreteness in energy was first found in analyzing a con-

tinuous spectrum emitted by interacting atoms in a solid, rather than in analyzing a dis-
crete spectrum such as is emitted by an isolated atom in a gas.

AT -
B e D

PROBLEMS

1. At what wavelength does a cavity at 6000°K radiate most per unit waveciength?

2. Show that the proportionality constant in (i-4) is 4/c. That is, show that the relation
between spectral radiancy R {v) and energy density p{¥) is R{vidv = {eid)p{v}dv.

3. Consider two cavities of arbitrary shape and material, each at the same temperature T,
connected by a narrow tube in which can be placed color filters fassumed ideal) which
will aflow only radiation ol a specified frequency v to pass through. (a} Suppose at a cer-
tain frequency v/, pr{¥) dv for cavity | was greater than pr{v)dy Tor cavity 2. A color
filter which passes only the frequency v is placed in the connecting tube. Discuss what
will happen in terms of encrgy flow. (b) What will happen to their respective temperatures?

: (c) Show that this would violate the second law of thermodynamics; hence prove that all

blackbodies at the same temperature must emit thermal radiation with the same spectrum

J independent of the details of their composition.

4. A cavity radiator at 6000°K has a hole 10.0 mm in diameter drilled in its wall. Find the
- power radiated through the hole in the range 5500—55t0 A. (Hint: See Problem2}

5. {a) Assuming the surface temperature of the sun to be 5700°K, use Stefan's law, {1-2),
to determine the rest mass lost per second to radiation by the sun. Take the sun’s diameter
to be 1.4 x 10° m. (b} What fraction of the sun’s rest mass is lost each year from elec-
tromagnetic radiation? Take the sun's rest mass fo be 2.0 x 10°% kg,

6. 1In a thermonuciear explosion the temperature in the fireball is momentarily 107 °K. Find
the wavelength at which the radiation emitted is a maximum.

7. At a given temperature, dpax = 6500 A for a blackbody cavity, What will 1., be if the
temperature of the cavity walls is increased so that the ratc of emission of spectral radia-
tion is doubled?

8. At what wavelength does the human body emit its maximum temperature radiation? List
‘ _ assumptions you make in arriving at an answer.

_'9. Assuming that 4., is in the near infrared for red heat and in the near ultraviolet for
blue heat, approximately what temperature in Wien's displacement law corresponds 1o
red heat? To blue heat? :

10. The average rate of solar radiation incident per unit area on the earth is 0.485 calfem?-
min (or 338 W/m?2). {a) Explain the consistency of this number wiih the solar constant
{the solar encrgy falling per unit lime at normal incidence on a unit area) whose value is
1.94 calfem®-min {or 1353 W/m?%). (b) Consider the earth to be a biackbody radiating
energy into space at this same rate. What surface temperature would the garth have under
these circumstances?

ey

11. Attached to the roof of a house ate three solar panels, each 1-m x 2 m. Assume the equiv-
alent of 4 hrs of normally incident sunlight each day, and that all the incident light is

3 absorbed and converted to heat. How many gallons of water can be heated from 40°C
: to 120°C each day?

12. Show that the Rayleigh-Jeans radiation faw, {1-t7}, is not consistent with the Wien dis-
placement faw vy, o T, {1-3a), or JmaxT = const, {1-3b}).

13. We obtain v_,, in the btackbody spectrum by setting dp{v)/dv =0 and A, by setting
dp{A)/dl =0. Why is it not possible to get from 1., T = const 10 Vyu = const x T
simply by using Amax = C/Vmax! That is, why is it wrong to assume that vadmax = G
where ¢ is the speed of hght?

14. Consider the following numbers: 2, 3,3, 4, 1, 2,2, 1, 0 representing the number of hits
garnered by each member of the Baltimore Orioles in a recent outing. {a} Calculate

gw3Eodd  €¢
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15.

16.

17.

18.

19

20. Show that, at the wavelength 1

s

directly the average number of hits per man. (b} Let x be a variable signifying the number
of hits obtained by a man, and let fix} be the number of times the number x appears.
Show that the average number of hits per man can be written as

4

2 X (%)
g=2
2, fix)
0
“Te) Let p{x) be the probability of the number x being attained. Show that % is given by
4
= % xp(x)
Consider the function
f{x]=f%(10—x)2 0<x<10
Sx)=0 alt other x
(a) From »
[=4]
; J xf(xydx
f —_ ™
)
J‘ S{x)}dx

- m

find the average value of x. {b) Suppose the variable x were discrete rather than contin-
uous. Assume Ax = 1 50 that x takes on only integral values 0, {, 2,..., 10. Compute
and compare to the result of part (a}. (Hint: {t may be easier 1o compute the appropriate
sum directly rather than working with general summation formulas.) (¢} Compute % for
Ax =5te.x=0,5 10 Compare to the resuit of part (a). (d) Draw analogies between the
results obtained in this problem and the discussion of Section 1-4, Be sure you understand
the roles played by &, A&, and P(£)
Using the relations P&y = ¢
to deduce (1-22), & = kT,

Use the refation R{v}dv ={
together with Planck’s radiat

TH¥T/kTand [9 P(£)d& = 1, evaluate the integral of {1-21)

c/4)p{v)dy between spectral radiancy and energy density,
ion law, to derive Stefan’s law, That is, show that

h vide 4
RT: ?W=OT

0
where o = 273k* /150243,

Derive the Wien displacement law, A, T = 0.2014 he/k, by solving the equation
dp(A)/dA = 0. (Hint: Set he/AkT = x and show that the equation quoted leads to ¢ ™* +
x/5 = 1. Then show that x = 4.965 is the solution.}

To verify experimentally that the 3°K universal background radiation accurately fits a
blackbody spectrum, it is decided to measure R{2) (rom a wavelength beiow Amax Where
its value is 0.2R {4} to a wavelength above A, where its value is again 0.2R {24}
Over what range of wavelength must the measurements be made?

maxs Where p.(1) has its maximum
Pr{dmax} = 170n(k T3 (he)*
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Use the result of the preceding problem to find the two wavelengths at which p{2) has
a value one-half the vaiue at d.,,. Give answers in terms Of Apyay-

A tungsten sphere 2.30 cm in diameter is heated to 2000°C. At this temperature tungsten
radiates only about 30% of the energy radiated by a blackbody of the same size and tem-
perature. (a)- Calculate the temperature of a perfectly black spherical body of the samc
size that radiates at the same rate as the tungsten sphere. {b) Calculate the diameter of
a perfectly black spherical body at the same temperature as the tungsten sphere that
radiates at the same rate,

(a) Show that about 25% of the radiant energy in a cavity is contained within wave-
lengths zero and A, te, show that

Amas

Q -

(Hint: hc/dpa kT = 4.965; hence Wien's approximation is fairly accurate in evaluating the
integral in the numerator above.) (b} By what percent does Wien's approximation used
over the entire wavelength range overestimate or underestimate the integrated energy
density?

Find the temperature of 2 cavity having a radiant energy density at 2000 A that is 3.82
times the energy density at 4000 A.
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