KOÇ UNIVERSITY

Fall Semester 2012

College of Sciences

Section 1

Quiz 11

13 December 2012

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Quiz duration, to mind

Name:

Student ID:

Signature:

A bowling ball of mass M and radius R rolls without slipping *down* a ramp, which is inclined at an angle θ to the horizontal.

- a. Draw the free body diagram for the bowling ball.
- b. What is the acceleration of the center of mass of the bowling ball?
- c. What is the magnitude of the friction force on the bowling ball?

Your results should be in terms of the given quantities (M,g, θ)

 $I(sphere)=(2/5)MR^2$

b) Mgsind -
$$f = Macm$$

 $\Xi \tau = fR = I_{cm} \alpha = \frac{2}{5}MR^2 \frac{acm}{R}$

(1)
$$fR = \frac{2}{5} M Racm$$

Insert in equal j

MR (gsint - acm) =
$$\frac{2}{5}$$
 MR acm
gsint = $(\frac{2}{5} + 1)$ acm = $\frac{7}{5}$ acm

c)
$$f = M(gsin\theta - \frac{5}{7}gsin\theta) = \frac{2}{7}Mgsin\theta$$

KOÇ UNIVERSITY

Fall Semester 2012

College of Sciences

Section 2

Quiz 11

13 December 2012

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A primitive yo-yo is made by wrapping a massless string around a solid cylinder of mass M and radius R. You hold the free end of the string stationary and release the cylinder (yo-yo) from rest. The string unwinds but does not slip or stretch as the cylinder (yo-yo) descends and rotates.

- a. Draw the free body diagram for the yo-yo.
- b. What is the acceleration of the cylinder (yo-yo)?
- c. What is the tension in the string?
 Your results should be in terms of the given quantities (M,g).

KOÇ UNIVERSITY

Fall Semester 2012

College of Sciences

Section 3

Quiz 11

13 December 2012

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A hollow, spherical shell with mass 3 kg rolls without slipping down a ramp, which is inclined at an angle 30° to the horizontal.

- a. Draw the free body diagram for the spherical shell.
- b. What is the acceleration of the center of mass of the spherical shell?
- c. What is the magnitude of the friction force on the spherical shell?

I(hollow, spherical shell)= $(2/3)MR^2$, $(\sin 30^0 = \cos 60^0 = 1/2)$, $g = 10 \text{ m/s}^2$.

b) Mgsind -
$$f = Macm$$

$$\gamma = I \chi$$

$$fR = \left(\frac{2}{3} MR^2\right) \frac{\alpha_{cm}}{R}$$

$$f = \frac{2}{3} Macm$$
Mgsind - $\frac{2}{3} Macm = Macm$

$$a_{cm} = \frac{3g\sin\theta}{5}$$

$$a_{cm} = \frac{3.10 \cdot \frac{1}{2}}{5} = \frac{3m}{5^2}$$

c)
$$f = \frac{2}{3} \text{ Macm} = \frac{2}{3} 3.3 = \frac{6}{1} \text{ Macm}$$

KOÇ UNIVERSITY

Fall Semester 2012

College of Sciences

Section 4

Quiz 11

13 December 2012

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name:

Student ID:

Signature:

m₁=15 kg box is resting on a horizontal, frictionless surface is attached to a m₂=4 kg weight by a thin, light wire that passes over a frictionless pulley. The pulley has the shape of a uniform solid disk of radius R and mass M=2kg. System is released from rest.

- a. Draw the free body diagram and show the forces acting on box m₁, weight m₂, and the pulley with mass M.
- b. Find the tension in the wire on both sides of the pulley.
- c. Find the acceleration of the box.

For the pulley let clockwise rotation be positive. Take $I=(1/2)MR^2$

 $M_{29}-T_{2}=M_{20}$ $T_{2R}-T_{1R}=\frac{1}{2}MR^{2}\times J(T_{2}-T_{1})R=\frac{1}{2}MR^{2}R$ $T_{2R}-T_{1R}=\frac{1}{2}MR^{2}\times J(T_{2}-T_{1})R=\frac{1}{2}MR^{2}R$ $T_{2R}-T_{1R}=\frac{1}{2}MR^{2}\times J(T_{2}-T_{1})R=\frac{1}{2}MR^{2}R$ Add 3 equations $T_{1}=M_{10}$ $T_{1}=M_$

College of Sciences

Section 5

Quiz 11

13 December 2012

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name:

Student ID:

Signature:

We wrap a light, non-stretching cable around a solid cylinder with mass M and radius R. The cylinder rotates with negligible friction about a stationary horizontal axis. We tie the free end of the cable to a block of mass m and release the block from rest at a distance h above the floor. As the block falls, the cable unwinds without stretching or slipping.

- a. Draw the free body diagram for the block and the cylinder.
- b. What is the acceleration of the falling block?
- c. What is the tension in the cable?

Your results should be in terms of the given quantities (M,m,g)

 $I(cylinder)=(1/2)MR^2$.

b)
$$\sum \vec{F} = m\vec{a}$$

 $mg + (-T) = may$ X
 $\sum \vec{C} = I\vec{a}_{2}$, $ay = R\alpha_{2}$
 $RT = I\alpha_{1} = \left(\frac{1}{2}MR^{2}\right)dz$
 $T = \frac{1}{2}MR\alpha_{2} = \frac{1}{2}May$

From (*)
$$mg - \frac{1}{2}May = may$$

$$ay = \frac{9}{1 + M/2m}$$

c)
$$T = mg - may$$

$$= mg - m \left(\frac{9}{1 + M/2m}\right)$$

$$= \frac{mg}{1 + 2m/M}$$