KOÇ UNIVERSITY College of Sciences

Fall Semester 2012

Section 1

Conlege of Sci Quiz 7

15 November 2012

Closed book. No calculators are to be used for this quiz.

Quiz duration: 15 minutes

First Name:

Last name:

Student ID:

Signature:

A block of mass m is situated on a frictionless plane inclined by α . The block is connected to a spring of negligible mass with force constant k. The block is initially at rest and located at the unstretched position of the spring (x=0). The block is then released, and it starts performing its motion. Find out the maximum elongation of the spring (maximum x value) during the motion of the block? Consider the x-axis to be along the inclined plane as shown in the figure above. Your answer should be a function of m, g, α , and k.

From energy conservation: $K_1 + U_1 = K_2 + U_1$ $K_1 = 0$ => The black is initially and rest $K_2 = 0$ => maximum elongation $U_1 = U_2$ $U_2 = U_1 + U_2$ $U_3 = U_4 + U_4$ $U_4 = U_4 + U_4$ $U_5 = U_4 + U_4$ $U_7 = U_8 + U_8$ $U_8 = U_8 + U_8$ $U_9 = U_9 + U_9$ $U_9 = U_9 + U_9$ U

KOÇ UNIVERSITY College of Sciences Ouiz 7 Fall Semester 2012

Section 2

15 November 2012

Closed book. No calculators are to be used for this quiz.

Quiz duration: 15 minutes

First Name:

Last name:

Student ID:

Signature:

Consider a particle with mass m that is initially at rest located at the top of a circular frictionless track with radius R. After it is released from the top, the particle moves down along the circular track until a critical position at which it looses contact with the track. Find an expression for the vertical position h of the particle at this position. (Gravitational acceleration is g)

acceleration is g)

Surface reaction force, \vec{n} , becomes zero

after particle loses contact with the track. $mg R = mgh + \frac{1}{2}mv^2 = 3 \quad \frac{1}{2}v^2 = g(R-h) \begin{cases} For \\ Frequency \\ Conservation \end{cases}$ $mg Sin \theta = \int_{-\pi}^{\pi} m \frac{v^2}{R} \sin \theta = \frac{h}{R}$

 $mg\frac{h}{R}=m\frac{N^2}{R}$ \Longrightarrow $N^2=gh$.

Substituting or above: 18h = (R-h) &

1 h= R-h => \[h= \frac{2R}{3} \]

KOÇ UNIVERSITY College of Sciences Ouiz 7

Fall Semester 2012

15 November 2012

Section 3

Closed book. No calculators are to be used for this quiz.

Quiz duration: 15 minutes

First Name:

Last name:

Student ID:

Signature:

A particle of mass m suspended with a massless, unstretchable string of length R makes vertical circular motion. The speed of the mass is minimum at the highest point so as it barely swings through a complete vertical circle. (Gravitational acceleration is g)

- a) What is the speed of the mass at the highest point of the vertical circle?
- b) What is the speed of the mass at the lowest point of the vertical circle?

a) "Sorely swinging" implies that tension in the string is tero, and $m\frac{V^2}{R} = mg = 0$ $N = \lceil g R \rceil$

b) from conservation of energy; $K_1 + U_1 = K_1 + U_2 , \quad U_2 = 0$ $\frac{1}{2} m N_1^2 + 2 m g R = \frac{1}{2} m N_2^2$ $\frac{1}{2} m g R + 2 m g R = \frac{1}{2} m N_2^2$

KOÇ UNIVERSITY College of Sciences

Fall Semester 2012

Section 4

Quiz 7

15 November 2012

Closed book. No calculators are to be used for this quiz.

Quiz duration: 15 minutes

First Name:

Last name:

Student ID:

Signature:

A particle moves along the x-axis while acted on by a single conservative force parallel to the x-axis. The force corresponds to the potential energy function: $U(x) = x^3 - 4x$.

- (a) Which value or values of x correspond to the equilibrium points?
- (b) What is the work done by the force as the particle moves from x=0 to x=4 m.
- (c) What is the x-component of the force applied on the particle at x=4 m.

$$\frac{d\mathcal{L}}{dx} = 3x^2 - 4 \qquad 3x^2 - 4 = 0 \qquad x = \pm \left(\frac{4}{3}\right)$$

c)
$$F_{x} = -\frac{4u}{dx}$$

$$F_{x} = -3x^{2}+4$$

$$F_{x}(4) = -44N$$

KOÇ UNIVERSITY College of Sciences

Fall Semester 2012

Section 5

Quiz 7

15 November 2012

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

First Name:

Last name:

Student ID:

Signature:

A block of mass m slides on a frictionless quarter - circular curved path of radius R. The block starts from the rest. (Gravitational acceleration is g)

- a) What is the speed of the block at the bottom of the curve?
- b) What is the net force on the block at the bottom of the curve?
- c) What is the magnitude of the normal applied to the block at the bottom of the curve?

mgR= ½ mv² => v = JegR b) Block is subject to angular acceleration.

$$F_{red} = m \frac{N^2}{R} = 2mg$$
, upward.

c) $n = mg + m \frac{v^2}{R}$