KOÇ UNIVERSITY

Fall Semester 2012

College of Sciences

Section 1

Quiz 9

29 November 2012

Closed book. No calculators are to be used for this quiz.

Quiz duration: 15 minutes

Name:

Student ID:

Signature:

Consider the isolated system of an arc of a circular wire and a point object that is shown in the figure. The radius and mass of the arc are R and M, respectively. You may assume the arc is one dimensional, that is you may ignore its thickness. Find the escape speed of the point mass m from the gravitational potential of the arc.

JU = GMM do

U= - GMM

Vescape = V2GM

 $dM = \frac{M}{20R}Rd\theta'$

KOC UNIVERSITY

Fall Semester 2012

College of Sciences

Section 2 Quiz 9 29 November 2012

Closed book. No calculators are to be used for this quiz.

Quiz duration: 15 minutes

Name:

Student ID:

Signature:

Consider the isolated system of a semi-circular wire and a point object that is shown in the figure. The radius and mass of the semi-circular wire are R and M, respectively. You may assume the wire is one dimensional, that is you may ignore its thickness. Find the escape speed of the point mass m from the gravitational potential of the semi-circular wire.

dM = M RdA

 $dU = -\frac{6mdM}{R}$ $dU = \frac{7}{11}$ $U = \frac{6mM}{R}$ $d\theta = -\frac{6mM}{R}$

Vescope = (26M)

KOÇ UNIVERSITY

Fall Semester 2012

College of Sciences

Section 3 Quiz 9

29 November 2012

Closed book. No calculators are to be used for this quiz.

Quiz duration: 15 minutes

Name: Student ID: Signature:

Consider the isolated system of a circular wire and a point object that is shown in the figure. The radius and mass of the circular wire are R and M, respectively. You may assume the wire is one dimensional, that is you may ignore its thickness. Find the escape speed of the point mass m from the gravitational potential of the circular wire.

$$|X_1 + U_1| = |X_2 + U_2|$$

$$\frac{1}{2} M \frac{2}{esc} + |U| = 0$$

$$\frac{1}{2} M \frac{2}{esc} = \frac{GMM}{\sqrt{R^2 d^2}} \Rightarrow 0 \text{ esc} = \sqrt{\frac{2GM}{R^2 d^2}}$$

KOÇ UNIVERSITY

Fall Semester 2012

College of Sciences

Section 4

Quiz 9

29 November 2012

Closed book. No calculators are to be used for this quiz.

Quiz duration: 15 minutes

Name:

Student ID:

Signature:

Consider the isolated system of a straight wire and a point object that is shown in the figure. The length and mass of the wire are L and M, respectively. You may assume the wire is one dimensional, that is you may ignore its thickness. Find the escape speed of the point mass m from the gravitational potential of the wire.

$$\begin{array}{c|cccc}
M,L & m \\
\hline
& & \\
& & \\
& & \\
& & \\
\end{array}$$

$$U = -\frac{GMM}{L} \left(\frac{dx}{dt^{\frac{1}{2}}} \right) = -\frac{GMM}{L} \ln \left(\frac{dtL}{dt} \right)$$

KOÇ UNIVERSITY

Fall Semester 2012

College of Sciences

Section 5

Quiz 9

29 November 2012

Closed book. No calculators are to be used for this quiz.

Quiz duration: 15 minutes

Name:

Student ID:

Signature:

Consider the isolated system of two straight wires and a point object that is shown in the figure. The length and mass of the wires are L and M, respectively. You may assume the wires are one dimensional, that is you may ignore their thickness. Find the escape speed of the point mass m from the gravitational potential of the wires.

