KOC UNIVERSITY

Fall Semester 2013

College of Sciences

Section 1

Quiz 10

05 December 2013

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A turntable rotates with a constant 2.25 rad/s² angular accelearation. After 4 s it has rotated through an angle of 60 rad. Find the angular velocities of the wheel (i) at the beginning and (ii) at the end of the 4 s interval.

KOÇ UNIVERSITY

Fall Semester 2013

College of Sciences

Section 2

Quiz 10

05 December 2013

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A flywheel of radius R starts from rest and accelerates with a constant angular acceleration α . Give expressions for the tangential acceleration, the radial acceleration and the resultant acceleration of a point on its rim (i) at the start and (ii) after it has turned through $\Delta\theta$.

$$\alpha_{rad} = \omega^2 r$$
 at $t = 0$,
$$\alpha_{rad} = \omega^2 r = 0 \implies \alpha = r \alpha_0 = \sqrt{\alpha_0} + \alpha_{rad}^2$$

$$\alpha_{tan} = r \alpha_0 \qquad \alpha_{rad} = \omega^2 r = 0 \implies \alpha = r \alpha_0 = \sqrt{\alpha_0} + \alpha_{rad}^2$$

$$\theta = \int \omega dt = \frac{\alpha t^2}{2} + \theta$$

$$\theta - \theta_0 = D\theta = \frac{\alpha_1 t^2}{2}$$

$$W \notin t = \frac{2b\theta}{ds} = ds \sqrt{\frac{2b\theta}{ds}}$$

KOÇ UNIVERSITY

Fall Semester 2013

College of Sciences

Section 3

Quiz 10

05 December 2013

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Calculate the moment of inertia of a thin uniform rod of length L, about an axis perpendicular to it and passing through its center.

$$dI = dml^{2} = 2dl.l^{2}$$

$$I = 2 \int 2l^{2}dl = 2 2 \frac{l^{3}}{3} = 2 \frac{l^{3}}{2h} = \frac{2M}{2h} \frac{l^{3}}{12} = \frac{Ml^{2}}{12}$$

KOÇ UNIVERSITY

Fall Semester 2013

College of Sciences

Section 4

Quiz 10

05 December 2013

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name:

Student ID:

Signature:

State and prove the parallel-axis theorem.

The relationship between the moment of inertia Icm of a body of mass M about an axis through its centured of mass and the moment of inertia Ip about any other axis parallel to the original one but displaced by a distance of is

Take X cm = y cm = f om =0

I cm = 2 mi (xi2 + vi) (about contra of mass)

about any other point (a,b)

Ip= 5 mil(xi-a)2+(yi-b)2]

= \(\frac{1}{2} \) \(\frac{1

= Icm + Ma

KOÇ UNIVERSITY

Fall Semester 2013

College of Sciences

Section 5

Quiz 10

05 December 2013

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Calculate the moment of inertia of a uniform, solid disk with mass M and radius R for an axis perpendicular to the plane of the disk and passing through its center.

Area element in polar coordinates

 $dI = dmr^2 = \lambda r^2 dA = \lambda r^3 dr d\theta$ $I = \iint \lambda r^3 dr d\theta = \frac{\lambda l^4}{4} \cdot 2\Lambda = \frac{Ml^2}{2}$