PHYS 101: General Physics 1
Section 5

KOÇ UNIVERSITY
College of Sciences
Quiz 11

Fall Semester 2013
20 December 2013

Closed book. No calculators are to be used for this quiz.
Quiz duration: 10 minutes
Name:
Student ID:
Signature:
The position vector of a particle of mass 2.0 kg is given as a function of time by $r=(6.0 i+5.0 t j)$ (here, time t is given in seconds). Determine the angular momentum of the particle as a function of time.

Section t $m=2 k$

$$
\begin{aligned}
m & =2 \hat{\jmath} \\
\vec{r} & =6 \hat{\imath}+5 t \hat{\jmath} / \mathrm{m}) \quad \vec{L}=? \\
\vec{L} & =\vec{r} \times \vec{\rho} \\
& =\vec{r} \times m \hat{u} \\
& =(6 \hat{\imath}+5 t \hat{\jmath}) \times(2 h \mathrm{j})(5 \hat{\jmath} \mathrm{~m} / \mathrm{s}) \\
\vec{L} & =\frac{60 \mathrm{~kg} / \mathrm{s}) \hat{k}}{\sqrt{r}}
\end{aligned}
$$

Closed book. No calculators are to be used for this quiz.
Quiz duration: 10 minutes
Name:

Student ID:

Signature:

Two objects are moving as shown in the figure. What is their total angular momentum about point O ?

Closed book. No calculators are to be used for this quiz.
Quiz duration: 10 minutes
Name:
Student ID:
Signature:
Suppose that the Sun runs out of nuclear fuel and suddenly collapses to form a white dwarf star, with a diameter equal to that of the Earth. Assuming no mass loss, what would then be the Sun's new rotation period, which currently is about 25 days? Assume that the Sun and the white dwarf are uniform, solid spheres; and the present radius of the Sun is approximately 100 times the radius of Earth. Hint: moment of inertia of a uniform solid sphere with mass M and radius R is $2 M R^{2} / 5$.

Closed book. No calculators are to be used for this quiz.
Quiz duration: 10 minutes Name:

Student ID:

Signature:
Two astronauts each having a mass of 75 kg are connected by a 10 m rope of negligible mass. They are isolated in space, orbiting their center of mass at speeds of $5.0 \mathrm{~m} / \mathrm{s}$. If, by pulling on the rope, the astronauts shorten the distance between them to 5.0 m , what are their new speeds?

Closed book. No calculators are to be used for this quiz.
Quiz duration: 10 minutes
Name:
The particle of mass m shown in the figure slides down the frictionless surface and collides with the uniform vertical rod, sticking to it. The rod pivots about O through the angle theta before momentarily coming to rest. Find θ in terms of the other parameters given in the figure.

