KOÇ UNIVERSITY

Fall Semester 2013

College of Arts and Sciences

Section

Quiz 1

3 October 2013

Closed book. No calculators are to be used for this quiz. Ouiz duration: 10 minutes

Name:

Student ID:

Signature:

Two cars, A and B, are moving in the $+\hat{x}$ direction with speeds v_{0A} and v_{0B} , where $v_{0A} > v_{0B}$. At t = 0s, the distance between the cars is L.

- 1. Determine the minimum acceleration of car A to avoid collision with car B, while car B continues to move with constant velocity. Express your answer in terms of given variables.
- 2. Plot the velocity of two cars as a function of time on the same graph qualitatively.

at t=0 s

JOA > JOB

KOÇ UNIVERSITY

Fall Semester 2013

College of Arts and Sciences

Section

Quiz 2

3 October 2013

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Two cars moving with same speed 10 m/s but in the opposite directions pass each other at t = 0. At that instant they both start to slow down with the same magnitude of acceleration $2 m/s^2$.

- 1. What is the maximum distance between the cars? How long does it take them to be at the same position again?
- 2. Plot the position vs. time graph of the cars qualitatively.

$$\frac{\nabla_{A} = \nabla_{ox} + \alpha t}{\nabla_{x} = \sqrt{o_{ox} + \alpha t}} \rightarrow t = \frac{10s}{5}$$

$$\frac{1}{\sqrt{a}} = \sqrt{o_{ox} + \alpha t} - (2m/s^{2})t \rightarrow t = \frac{10s}{5}$$

College of Arts and Sciences

Section

Quiz 3

3 October 2013

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A ball hits the ground 3s after it was released from an elevator which is moving upward with constant speed 5 m/s.

- 1. Find the distance between the ball and the elevator at the instant the ball hit the ground. $(g = 10 \text{ m/s}^2)$.
- 2. Plot the velocity of the ball and the elevator as a function of time on the same graph.

$$\nabla = \frac{1}{5} \text{ mode }$$

$$= \frac{1}{5} \text{ mode }$$

ball:
$$y-y_0 = y_0 + \frac{1}{2}y_0^2$$

 $-x = (5m/s)(3s) + \frac{1}{2}(-10m/s^2)(3s)^2$
 $= 15m - 45m$
 $x = 30m$.
 $d = 15m + 30m = 45m$.

KOÇ UNIVERSITY

Fall Semester 2013

College of Arts and Sciences

Section

Quiz 4

3 October 2013

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A ball "A "is thrown vertically from the ground with initial speed $v_0 = 5m/s$. At the same instant, another ball "B" is released from a height above the ball "A" to fall freely. Both balls reach to the ground at the same time. $(g = 10m/s^2)$

- 1. What is the distance between the balls when ball "A" reached to its maximum height?
- 2. On the same graph, plot the velocity of the balls as a function of time qualitatively.

$$t_A = t_0 = t$$
 $v_A = v_{0_A} + at$
 $-10m/s = -10m/s^2 t \rightarrow t = 1s$

$$(y-y_0)_{8} = v_{08}t + \frac{1}{2}a_{08}t^{2}$$

 $(y-y_0)_{8} = -5 \cdot t^{2}$
 $(y-y_0)_{8} = -5 \cdot (0.5 \cdot s)^{2}$
 $= 1.25 \, m$

-25 = 2 (-10)(y-yo) (yyo) = 1,25 m Jd - 1.25m 3.75m Jm. distance both them:

Jd - 3.75m Jm. J= 3.75m - 1.25m = 2.5 m

Jy = Joy + 2ay (y-y) A

KOÇ UNIVERSITY

Fall Semester 2013

College of Arts and Sciences

Section

Quiz 5

3 October 2013

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A vertical launch ramp is d = 10 m long from the ground. During the launch, the ramp applies a constant vertical acceleration $a_0 = 5 m/s^2$ to an object until it leaves the ramp. $(g = 10 m/s^2)$.

- 1. The launch starts at t = 0s with the object at rest on the base of the ramp at the ground. When does the object return to the ground?
- 2. Plot the velocity vs. time graph of the object during this motion qualitatively. Indicate the important data points on the graph.

During Launch:

$$y-y_0 = y_0 + \frac{1}{2} ayt^2$$

 $y-y_0 = y_0 + \frac{1}{2} ayt^2$
 $y-y_0 = y_0 + \frac{1}{2} ayt^2$

After object leaves the romp:

$$y - y_0 = x_{0y}t + \frac{1}{2}a_yt^2$$

$$-10m. = (10m/s)t + \frac{1}{2}(-10m/s^2)t^2$$

$$-5t^2 + 10t + 10 = 0$$

$$-t^2 + 2t + 2 = 0 = t_1 z = -2 + \sqrt{4 + 8} = 1 \pm \sqrt{3}$$

$$\frac{1}{4}t^2 + \frac{1}{4}t^2 = 0$$

thotal = 2+(1+1/3) = 3+1/3 s.

