PHYS 101: General Physics
Section 2

KOÇ UNIVERSITY
College of Sciences Quiz 3

Fall Semester 2013
10 October 2013

Closed book. No calculators are to be used for this quiz.
Quiz duration: 10 minutes
First Name: Last name: Student ID: Signature:
Consider the motion shown in the figure, where a ball starts moving at time $t=0$ with speed v_{0} and making an angle of $\pi / 4$ radians with the horizontal axis. If the horizontal and vertical accelerations of the ball are given by $a_{x}=A$ and $a_{y}=-B$, respectively, find the maximum displacements in the vertical and horizontal directions. Here A and B are positive constants. You may ignore the effects of gravity.

PHYS 101: General Physics
Section 4

KOÇ UNIVERSITY
College of Sciences Quiz 3

Fall Semester 2013
10 October 2013

Closed book. No calculators are to be used for this quiz.
Quiz duration: 10 minutes
First Name: Last name: Student ID: Signature:
Consider the motion shown in the figure, where a ball starts moving at time $t=0$ with speed v_{0} and making an angle of 37° with the horizontal axis. If the horizontal and vertical accelerations of the ball are given by $a_{x}=A$ and $a_{y}=-B t$, respectively, find the maximum height reached by the object during its motion. Here A and B are positive constants. You may ignore the effects of gravity. Warning: acceleration is time-dependent.

PHYS 101: General Physics
Section 5

KOÇ UNIVERSITY
College of Sciences Quiz 3

Fall Semester 2013
10 October 2013

Closed book. No calculators are to be used for this quiz.
Quiz duration: 10 minutes
First Name: Last name: Student ID: Signature:
Consider the motion shown in the figure, where a ball starts moving at time $t=0$ with speed v_{0} and making an angle of 53° with the horizontal axis. If the horizontal and vertical accelerations of the ball are given by $a_{x}=A t$ and $a_{y}=-B$, respectively, find the range of the motion in the horizontal direction. Here A and B are positive constants. You may ignore the effects of gravity. Warning: acceleration is time-dependent.

PHYS 101: General Physics
Section 1

KOÇ UNIVERSITY
College of Sciences Quiz 3

10 October 2013

Closed book. No calculators are to be used for this quiz.
Quiz duration: 10 minutes
First Name: Last name: Student ID:
Signature:
Consider the uniform circular motion shown in the figure, where an object is rotating along the circular track with a constant angular frequency $w=2 \pi / T$. Here T is the period of the motion. Using the $x-y$ coordinate system indicated in the figure, find the position and acceleration of the object as a function of time t, assuming the object passes ($x=0, y=0$) point at time $t=0 \mathrm{~s}$.

PHYS 101: General Physics
Section 3

KOÇ UNIVERSITY
College of Sciences Quiz 3

Fall Semester 2013
10 October 2013

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes First Name: Last name: Student ID: Signature:

Consider the nonuniform circular motion shown in the figure, where an object is rotating along the circular track with a time-dependent tangential acceleration given by $a_{\text {tang }}=A t$, where A is a positive constant and t is time. If the object starts at rest from the position shown in the figure, find its position in the $x-y$ coordinate system at time $t=2 \mathrm{~s}$. Here, you may set $A=3 \mathrm{~m} / \mathrm{s}^{3}$ and $R=16 / \pi$ meters.

1 Section 1

From the figure, it is clear that

$$
\begin{gathered}
x=R+R \cos (\alpha) \\
y=R \sin (\alpha)
\end{gathered}
$$

and the equation for the angle α at any time is equal to

$$
\alpha=\omega t
$$

so, equations of motion for x and y axes are

$$
\begin{gathered}
x=R+R \cos (\omega t) \\
\mathrm{y}=R \sin (\omega t)
\end{gathered}
$$

To find velocities, differentiate x and y coordinates with respect to time

$$
\begin{gathered}
\frac{d x}{d t}=v_{x}=-R \sin (\omega t) \\
\frac{d y}{d t}=v_{y}=R \cos (\omega t) \\
a_{x}=\frac{d v_{x}}{d t}=-R \omega^{2} \cos (\omega t) \\
a_{y}=\frac{d v_{y}}{d t}=-R \omega^{2} \sin (\omega t)
\end{gathered}
$$

2 Section 2

Equations of motion for x and y axes are

$$
y=-\frac{1}{2} B t^{2}+\frac{v_{0 y} t}{\sqrt{2}}
$$

(equation of motion with cons. acceleration; $\mathrm{a}=-\mathrm{B}, v_{0}=v_{0} \sin (45), y_{0}=0$)

$$
x=\frac{1}{2} A t^{2}+\frac{v_{0} t}{\sqrt{2}}
$$

(same as y where $\mathrm{a}=\mathrm{A}, v_{0}=v_{0} \cos (45), x_{0}=0$)

Then, in order to find maximum of y-function;

$$
\begin{aligned}
\frac{d y}{d t}=0 & =-B t+\frac{v_{0}}{\sqrt{2}} \\
t & =\frac{v_{0}}{B \sqrt{2}}
\end{aligned}
$$

Plug $t=\frac{v_{0}}{B \sqrt{2}}$ into y equation of motion to find maximum of y .

$$
y_{\max }=\frac{v_{0}^{2}}{4 B}
$$

Same procedure for the range in x-direction with $t_{\text {flight }}=2 t$

$$
x_{\max }=v_{0}^{2}\left(\frac{A+1}{B}\right)
$$

3 Section 3

$$
a_{\text {tang }}=A t
$$

Since the tangential acceleration is given, this motion does not have any difference from motion along a straight line.

$$
v_{t a n g}=\int a_{\text {tang }} d t=\int A t d t=\frac{A t^{2}}{2} x_{\text {tang }}=\int v_{t a n g} d t=\int A t^{2} / 2=\frac{A t^{3}}{6}
$$

In two seconds, total distance covered is

$$
x(t=2)=A(2)^{3} / 6=4 m .
$$

The circumference of the circle is

$$
2 \pi R=32 \mathrm{~m} .
$$

Total distance covered is equal to the $1 / 8$ of circumference. Therefore, the total angle covered is

$$
\alpha=\frac{2 \pi}{8}=\pi / 4
$$

In this problem, x and y coordinates can be found via

$$
\begin{gathered}
x=R \cos (\alpha) \\
y=R-R \sin (\alpha)
\end{gathered}
$$

where

$$
\begin{gathered}
R=\frac{16}{\pi} \\
\alpha=\pi / 4
\end{gathered}
$$

$4 \quad$ Section 4

Equations of motion;

$$
x=\frac{A t^{2}}{2}+v_{0} \cos (\alpha)
$$

since it is motion with constant acceleration, and

$$
\begin{gathered}
v_{y}=\int-B t d t+v_{0} \sin (\alpha) \\
y=\int\left(-\frac{B t^{2}}{2}+v_{0} \sin (\alpha)\right) d t=\frac{B t^{3}}{6}+v_{0} \sin (\alpha t)
\end{gathered}
$$

To find maximum of y, take the derivative with respect to time and set equal to zero

$$
\begin{aligned}
\frac{d y}{d t}=0 & =-\frac{B t^{2}}{2}+v_{0} \sin (\alpha) \\
t^{\prime} & =\sqrt{\left(\frac{2 v_{0} \sin (\alpha)}{B}\right)}
\end{aligned}
$$

Maximum height that the particle will achieve is

$$
y\left(t=t^{\prime}\right)=-\frac{B}{6}\left(\frac{2 v_{0} \sin (\alpha)}{B}\right)^{3 / 2}+v_{0} \sin (\alpha) \sqrt{\left(\frac{2 v_{0} \sin (\alpha)}{B}\right)}
$$

where $\alpha=37$

5 Section 5

Equations of motion for x and y directions are

$$
\begin{gathered}
y=-\frac{B t^{2}}{2}+v_{0} \sin (\alpha) t \\
v_{x}=\int A t d t+v_{0} \cos (\alpha)=\frac{A t^{2}}{2}+v_{0} \cos (\alpha) \\
x=\int\left(\frac{A t^{2}}{2}+v_{0} \cos (\alpha)\right) d t=\frac{A t^{3}}{6}+v_{0} \cos (\alpha) t
\end{gathered}
$$

Time of flight $t_{\text {flight }}$ can be calculated from the time required for the ball to reach its maximum height

$$
\begin{gathered}
\frac{d y}{d t}=0=-B t+v_{0} \sin (\alpha) \\
t^{\prime}=\frac{v_{0} \sin (\alpha)}{B} \\
t_{\text {flight }}=2 t^{\prime}
\end{gathered}
$$

and maximum displacement in x direction will be

$$
x\left(t=t_{f l i g h t}\right)=\frac{A}{6}\left(\frac{8 v_{0}^{3} \sin ^{3}(\alpha)}{B^{3}}\right)+v_{0} \cos (\alpha)\left(\frac{2 v_{0} \sin (\alpha)}{B}\right)
$$

