Name: «Name_»	Signature:
Surname: «Surname_»	Student ID Number: «Student_ID»

PHYS 101 General Physics I - Final Exam

January 5, 2015 Monday, 11:45-13:45

Please read!

- Count to make sure that there are 5 pages in the question booklet
- Check your name and surname on front page, and student ID number on each page, and sign each page.
- This examination is conducted with closed books and notes.
- Put all your personal belongings underneath your seat and make sure that pages of books or notebooks are not open.
- Absolutely no talking or exchanging anything (like rulers, erasers) during the exam.
- You must show all your work to get credit; you will not be given any points unless you show the details of your work (this applies even if your final answer is correct!).
- Write neatly and clearly; unreadable answers will not be given any credit.
- If you need more writing space, use the backs of the question pages and put down the appropriate pointer marks.
- Make sure that you include units in your results.
- Make sure that you label the axis and have units in your plots.
- You are not allowed to use calculators during this exam.

P101_Index: «Index"

1	2	3	4	Total

Exam Room: «Exam_Room»	P101_Index: «Index»
Student ID Number: «Student_ID»	Signature:

1-(25 Points) A 30 cm long, 100 g uniform thin rod is hinged at one end and connected to a wall. It is held out horizontally, then released.
(Hint: $\int x^{n} d x=\frac{x^{n+1}}{n+1}$)

(i) Derive the moment of inertia of the rod about an axis passing through its center of mass.
ANSWER :
(ii) Using parallel axes theorem, derive the moment of inertia of the rod about an axis passing through one of its ends.
ANSWER :
(iii) What is the angular velocity of the center of mass of the rod as it hits the wall?

ANSWER :
(iv) What is the speed of the center of mass of the rod as it hits the wall?

ANSWER :
(v) What are the angular velocity and the speed of the end of the rod as it hits the wall?

ANSWER :

Exam Room: «Exam_Room»	P101_Index: «Index»
Student ID Number: «Student_ID»	Signature:

2-(25 Points) A uniform solid cylinder of mass $\mathrm{M}=14 \mathrm{~kg}$ and radius $\mathrm{R}=10 \mathrm{~cm}$ has a massless cord wound around it. The cord passes over a massless, frictionless fixed pulley and is attached to a block, hanging vertically. The plane on which the cylinder moves is inclined 37° to the horizontal. The cylinder starts from rest and rolls without slipping down the incline. The (linear) acceleration of the cylinder's center of mass is measured to be $2 \mathrm{~m} / \mathrm{s}^{2}$.
(The rotational inertia of the cylinder about its central axis
 is $\frac{1}{2} M R^{2}$. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}, \sin 37^{\circ}=3 / 5, \cos 37^{\circ}=4 / 5$.)
a.) Find the acceleration of the hanging block.

ANSWER :

b.) Find the mass of the hanging block.

ANSWER :

c.) To maintain rolling without slipping, what should be the minimum value of the coefficient of static friction μ_{s} between the incline and the cylinder?
ANSWER :

Exam Room: «Exam_Room»	P101_Index: «Index»
Student ID Number: «Student_ID»	Signature:

3-(25 Points) A body of mass M attached to an ideal spring of spring constant k is initially lying at rest on a horizontal, frictionless surface. The body explodes into two pieces at time $t=0$. The piece with mass " m " moves right with a constant speed v , while the other piece that remains attached to the spring moves left and performs a
 simple harmonic oscillation.
a.) What is the period T of the simple harmonic oscillator?

ANSWER :
b.) Determine the amplitude A of the simple harmonic oscillator in terms of $\mathrm{M}, \mathrm{m}, \mathrm{k}$, and v .

ANSWER :

c.) Write down an expression for the displacement $\mathrm{x}(\mathrm{t})$ for the simple harmonic oscillator, taking the coordinate origin as the equilibrium point of the oscillator.

ANSWER :

Exam Room: «Exam_Room»	P101_Index: «Index»
Student ID Number: «Student_ID»	Signature:

4-(25 Points) Vertically vibrating segment of a guitar string of length $L=50 \mathrm{~cm}$ is stretched horizontally between $x=0$ and $x=L$. The string carries a standing wave with the lowest possible frequency. It generates an A (La) sound at 440 Hz , while the antinode oscillates with an amplitude of 1.0 mm .
(a) Find the numerical value of the wavelength of the sinusoidal waves in the standing wave.

ANSWER :

(b) Find the numerical value of the speed (phase velocity) of the travelling mechanical waves on the string?

ANSWER :

(c) Write down a possible wave function $y(x, t)$ for the standing wave. Specify the values of all the constants in your expression.

ANSWER :
(d) Find the numerical value of the maximum vertical speed of the string. At which point is it realized?

ANSWER :
Make sure that you show your work. No points will be given to answers without supporting calculations.

