KOÇ UNIVERSITY

College of Sciences
Ouiz 5

Fall Semester 2014

Section 1

23 October 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name: Cagler KOCA Student ID:

Signature:

A car rounds a banked curve (where the coefficient of static friction is μ) as shown in the figure .The radius of curvature of the road is R and the banking angle is θ .

What is the minimum speed the car can have before sliding down the banking (express your answer in terms of R, g, θ and μ). Draw the free body diagram for the car and write Newton's equations for the motion in each direction using the coordinate axes given in the figure.

$$\left(\frac{mg}{\cos\theta + \mu \sin\theta}\right) \left(\sin\theta - \mu_{s}\cos\theta\right) = \frac{m\nu}{R}$$

$$V \ge \int \frac{gR(\sin\theta - \mu_{s}\cos\theta)}{\cos\theta + \mu_{s}\sin\theta}$$

KOÇ UNIVERSITY College of Sciences Quiz 5 Fall Semester 2014

Section 2

23 October 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

In the figure blocks A, B and C have weights of 20N, 10N and 30N, respectively. The coefficient of static friction between blocks A and B is μ_s and the coefficient of kinetic friction between block A and the horizontal surface is μ_k . There is no friction between block C and the inclined plane. The system of blocks are released from rest. We observe that blocks A and B move together

$$(g = 10m/s^2; \sin 37^o = 0.6, \cos 37^o = 0.8)$$

- a) Draw free-body diagram for each block just after the release.
- b) In terms of g and μ_s , what is a, the maximum acceleration that block B can have without sliding over block A?
- c) If $\mu_k = 0.4$, what is the minimum μ_s between A and B so that B does not slip and they (A and B) move together?

KOÇ UNIVERSITY College of Sciences Quiz 5

Fall Semester 2014

Section 3

23 October 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

A car rounds a banked curve (where the coefficient of static friction is μ) as shown in the figure. The radius of curvature of the road is R and the banking angle is θ .

What is the maximum speed the car can have before sliding up the banking (express your answer in terms of R, g, θ and μ). Draw the free body diagram for the car and write Newton's equations for the motion in each direction using the coordinate axes given in the figure.

$$Ny - w - fy = 0$$
 $Ny = mg + ps N sin \theta$
 $N cos \theta = mg + ps N sin \theta$
 $N = \frac{mg}{cos \theta - ps sin \theta}$

NSIND +
$$\mu_s$$
 NCOSO = $m \frac{v^2}{R}$
 $N(\sin\theta + \mu_s N\cos\theta) = m \frac{v^2}{R}$
 $M(\sin\theta + \mu_s N\cos\theta) = m \frac{v^2}{R}$
 $M(\sin\theta + \mu_s \cos\theta) = m \frac{v^2}{R}$

KOÇ UNIVERSITY College of Sciences

Fall Semester 2014

Section 4

Quiz 5

23 October 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

Two blocks, $m_1 = 3.0kg$ on the inclined plane ($\theta = 37^{\circ}$) and $m_2 = 5.0kg$ on the horizontal plane are connected by light cord over a frictionless pulley. A force F=50N is acting on m_2 in a direction making 53^0 with horizontal. Coefficients of static and kinetic frictions for both blocks and surfaces are $\mu_s = 0.3$ and $\mu_k = 0.2$. The system is initially at rest. $(\cos 37^{\circ} = \sin 53^{\circ} = 0.8, \sin 37^{\circ} = \cos 53^{\circ} = 0.6, g = 10m/s^{2})$ a) If the system is released from rest, in which direction it starts to move? Show your calculations to support your answer.

b) Find the acceleration a of the blocks.

a) Forces in + direction:
$$F_{+} = F_{cos} 53^{\circ} = (50N) \cdot 0.6 = 30N$$

Forces in - direction: $m_{,q} \sin 37 + f_{1s} + f_{2s} = 18 + \mu_{s} N_{,} + \mu_{s} N_{2s}$
 $= 18 + (0.3)(m_{,q} \cos 37) + (0.3)(m_{,q} - F_{sin} 51)$
 $= 18 + 7.2 + 3 = 29.2N$

Ever with Ms Ft overcomes F. Hence system moves

b) Since we know that block is moving use Mr.

$$ZF = F_{cos}\theta - m_{1}g_{sin}37 - f_{1}L - f_{2}L$$

$$= 30 - 18 - (0.2)(24) - (0.2)(50 - 20)$$

$$= 5.2N$$

PHYS 101: General Physics 1 KOÇ UNIVERSITY

Fall Semester 2014

College of Sciences

Section 5

Quiz 5

23 October 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

Consider the system shown in the figure, where the particle of mass M = 0.5 kg moves at constant speed towards right on a rough table under the influence of mass m = 0.2 kg.

- a)Draw the free body diagrams for masses m and M.
- b) Write Newton's equations for the motion.
- c) What is the coefficient of kinetic friction?

Note that the pulleys are massless and frictionless.

(Take $g = 10 \text{ m/s}^2$).

fle of the speed of well.

My man makes an analysis of the constant speed of well.

$$2T = m_3 = 2T = 2N = 2T = 1N$$
 (for m)

 $T = R = 2T = 2N = 2T = N$ for m)