Closed book. No calculators are to be used for this quiz. Name: () A qua ARISEY Student ID: Signature:

oarisevly@ku.edu.tr

A net force in the x-direction with magnitude $F_x = F_0 + bx$ is applied to an object with mass m. The object is initially at the origin $(x_i = 0)$ and moving in the +x direction with a speed v_0 . What is the speed of the object when it reaches the position $x_f = F_0/b$?

$$[-6] = \frac{M}{M}$$

$$\begin{cases} 1 & \text{lo} \\ 2 & \text{lo} \\ 2 & \text{lo} \\ 3 & \text{lo} \\ 4 & \text{lo} \\ 4 & \text{lo} \\ 6 & \text{lo} \\ 6 & \text{lo} \\ 6 & \text{lo} \\ 7 & \text{lo} \\ 1 & \text{lo} \\ 1 & \text{lo} \\ 1 & \text{lo} \\ 2 & \text{lo} \\ 2 & \text{lo} \\ 3 & \text{lo} \\ 4 & \text{lo} \\ 6 & \text{lo} \\ 6 & \text{lo} \\ 6 & \text{lo} \\ 7 & \text{lo} \\ 1 & \text{lo} \\ 1 & \text{lo} \\ 1 & \text{lo} \\ 2 & \text{lo} \\ 1 & \text{lo} \\ 2 & \text{lo} \\ 3 & \text{lo} \\ 4 & \text{lo} \\ 4$$

$$W_{tot} = \int_{0}^{\frac{F_{0}}{b}} F_{x} dx =$$

$$W = \int_{b+}^{F_0} \frac{b}{b} = \int_{0}^{F_0/b} \frac{1}{b} = \int$$

$$m U p^2 = \frac{3F_0^2}{6} + m U_0^2$$

$$Q_{f} = + \frac{3F_{0}^{2}}{mb} + Q_{0}^{2}$$

Closed book. No calculators are to be used for this quiz.

Name: Student ID: Signature:

A block of ice with mass m is initially at rest on a frictionless, horizontal surface. A worker then applies a non-constant, horizontal force \vec{F} to it. As a result, the block moves along the x-axis such that its position as a function of time is given by $x(t) = at^3$. Calculate the work done by the force \vec{F} during the first τ seconds of the motion.

By Newton's 2nd (aw

$$\frac{1}{m} = max$$

$$\mu = 0$$

$$\frac{1^{2}x(+)}{dt^{2}} = 6\alpha t = \frac{F(+)}{m} = y \quad F(+) = 6\alpha t m$$

$$x(t) = \alpha + 3$$

$$dx = 3\alpha t^{2} dt$$

$$\frac{1}{m} = max$$

$$\frac{1^{2}x(+)}{dt^{2}} = 6\alpha t = \frac{F(+)}{m} = y \quad F(+) = 6\alpha t m$$

$$x(t) = \alpha + 3$$

$$\frac{1}{m} = max$$

$$x(t) = 6\alpha t m$$

$$x(t) = 6\alpha$$

[Wtot] = L2 WT4 = WL

PHYS 101: General Physics KOC UNIVERSITY College of Arts and Sciences Quiz 6-3 6 Nov 2014

Fall Semester 2014

Closed book. No calculators are to be used for this quiz. Student ID:

Signature: Name:

A small particle of mass m is pulled to the top of a frictionless half-cylinder (of radius R) by a cord that passes over the top of the cylinder as in the figure. Calculate, by integration, the work done by the force \vec{F} in moving the particle at constant speed from the bottom to the top of the half-cylinder.

* The mass of the rope is not important since there is no

tongential acceleration.

Furthermore, F=T

in magnitude

N/mgsind=) contripetal acc. d= dri+ 1200

Constant speed => No acceleration in & direction

F = mg cos O

F= mg cos D O

 $W = \int_{\mathbb{R}^{n}} \left(\frac{\mathbb{R}^{n}}{\mathbb{R}^{n}} \right) \left(\frac{\mathbb{R}^{$ (R,O) (RO)

= R mgcos OdO = Rmg sinO = mgR

No Lmg = m lo 2

Vo=+ NoLg

Closed book. No calculators are to be used for this quiz. Signature: Name: Student ID:

A skier with mass m is moving on a horizontal field along the x-direction with a speed v_0 . She is approaching a region between x = 0 and x = L, where the snow has partially melted to yield a coefficient of kinetic friction $\mu(x) = \mu_0 x/L$ (rest of the field can be assumed to be frictionless). How large should v_0 be so that she will not come to a full stop?

PHYS 101: General Physics KOÇ UNIVERSITY College of Arts and Sciences Quiz 6-5 6 Nov 2014

Fall Semester 2014

Closed book. No calculators are to be used for this quiz.

Name: Student ID: Signature:

A small block with a mass m is attached to a cord passing through a hole in a frictionless, horizontal surface. The block is originally revolving at a distance r_0 from the hole with a speed v_0 . The cord is then pulled from below until the distance from the hole is reduced to $r_0/2$. The speed of the block is observed to be $v(r) = r_0v_0/r$ when it is at a distance r from the hole. How much work is done by the person who pulled the cord?

Featripetal =
$$\frac{me^2(r)}{r^3}$$

Featripetal = $\frac{mc^2 V_0^2}{r^3}$

Figure = $-\frac{mc^2 V_0^2}{r^3}$

What = $\int_{-r_0}^{r_0} \frac{r_0^2 V_0^2}{r^3} dr = +\frac{mc^2 V_0^2}{r^3}$

Figure = $-\frac{mc^2 V_0^2}{r^3}$

The seatripetal is $-\frac{r_0^2 V_0^2}{r^3}$ and $-\frac{r_0^2 V_0^$

$$\frac{mr_0^2 u_0^2}{2} \left(\frac{4}{r_0^2} - \frac{1}{r_0^2} \right) = \frac{3}{2} m u_0^2$$

$$W = K_2 - K_1 \qquad K_1 = \frac{1}{2} m \left[u \left(r_0 \right) \right]^2 = \frac{1}{2} m \frac{r_0^2 u_0^2}{r_0^2} = \frac{1}{2} m u_0^2$$

$$K_2 = \frac{1}{2} m \left[u \left(r_0 \right) \right]^2 = \frac{1}{2} m \frac{r_0^2 u_0^2}{r_0^2} = 2 m u_0^2$$

$$W = \left(2 - \frac{1}{2} \right) m u_0^2$$