Name:	Signature:
Surname:	Number:

KOÇ UNIVERSITY
College of Sciences
PHYS 101 General Physics 1
Fall Semester 2015
Midterm1 Exam
October 26, 2015 Monday, 19:00-21:00

Please read.

- Count to make sure that there are 5 pages in this question booklet
- Check your name, number, on front page, and student ID on each page.
- This examination is conducted with closed books and notes.
- Put all your personal belongings underneath your seat and make sure that pages of books or notebooks are not open.
- Absolutely no talking or exchanging anything (like rulers, erasers) during the exam.
- You must show all your work to get credit; you will not be given any points unless you show the details of your work (this applies even if your final answer is correct).
- Write neatly and clearly; unreadable answers will not be given any credit.
- If you need more writing space, use the backs of the question pages and put down the appropriate pointer marks.
- Make sure that you include units in your results.
- Make sure that you label the axis and have units in your plots.
- You are not allowed to use calculators during this exam.
- Turn off your mobile phones, and put away.
- You are not allowed to leave the class during the first 15 minutes, and last 15 minutes.
- Write your final answers into the boxes. No points will be given to unjustified answers. Incomplete calculations will not be graded.

	P101_Index:			
1	2	3	4	Total

Exam Room:	P101_Index:
Student ID Number:	Signature:

$\mathbf{1}(\mathbf{2 5} \mathbf{~ p t s})$ A comet is orbiting the sun as shown in the figure. The distance r of the comet from the sun is given in terms of its angular coordinate θ as

$$
r=\frac{a}{1-\cos \theta}
$$

where a is constant.
a) (2 pts) What is the minimum distance $r_{\text {min }}$ between the comet and the sun? At which angle $\theta_{\text {min }}$ is it realized?

b) (3 pts) Write down the vector \vec{r} when $\theta=\pi / 3$ for the coordinate system given in the figure. $\left(\pi / 3=60^{\circ}\right)$

$$
\vec{r}=
$$

c) (5pts) Find a tangent vector \vec{t} to the orbit at $\theta=\pi / 3$.

$$
\vec{t}=
$$

Our next goal is to calculate the velocity vector $\vec{v}=\left(v_{x} \hat{i}+v_{y} \hat{j}\right)$ at $\theta=\pi / 3$.
d) (5 pts) Find an algebraic equation relating v_{x} and v_{y} at $\theta=\pi / 3$, using the fact that \vec{v} is tangent to the orbit.

e) (5 pts) For orbital motion, $\vec{r} \times \vec{v}=\vec{l}$, where \vec{l} is a constant vector. Evaluate the cross product to get a second algebraic relation between v_{x} and v_{y} at $\theta=\pi / 3$.

f) (5 pts) Find the speed of the comet at $\theta=\pi / 3$.
$\sin (\pi / 3)=\sqrt{3} / 2, \cos (\pi / 3)=1 / 2$ \square

Exam Room:	P101_Index:
Student ID Number:	Signature:

$2(25 \mathbf{p t s})$ A ball is thrown from the ground with a speed v_{0} at an angle of θ_{0} from the horizontal. The speed of the ball at its maximum height is $\sqrt{6 / 7}$ of its speed when it is at half of its maximum height. Calculate angle θ_{0}.

\square

Exam Room:	P101_Index:
Student ID Number:	Signature:

Q3 (25 pts) An object with mass m slides down a flat surface under the influence of gravity. The surface meets a vertical wall at an angle θ and the object is initially at rest at a distance d from the wall, as shown in the figure. The coefficient of friction for the contact between the object and the surface is $\mu\left(=\mu_{s}=\mu_{k}\right)$.
a) (3 pts) Draw the free diagram for the object.

Express your answers to the questions below in terms of m, θ, d, μ gravitational acceleration g (you may not need all of them) and necessary unknowns.
b) (3 pts) Write down Newton's Second Law for the forces parallel to the surface (along x).

c) (3 pts) Write down Newton's Second Law for the forces perpendicular to the surface (along y).

d) (5pts) Find $\theta_{\max }$, maximum value of θ for which the object can slide down.

$$
\theta_{\max }=
$$

e) (5 pts) For $\theta \leq \theta_{\text {max }}$, find the time it takes for the object to reach the vertical wall.

$$
t=
$$

f) (6 pts) Imagine θ is adjustable while d is fixed. Calculate the angle θ_{c} at which the object reaches the wall in shortest time.
You may want to use following identities:
$\sin (2 \theta)=2 \sin \theta \cos \theta$

$$
\theta_{c}=
$$

$\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$

Exam Room:	P101_Index:
Student ID Number:	Signature:

Q4 (25 pts) A small block with mass m is placed inside an inverted cone that is rotating about a vertical axis with period T. The walls of the cone make an angle with the vertical axis. The coefficient of static friction between the block and cone surface is μ_{s}. The block is initially at a height h above the apex of the cone. Calculate the maximum value of T such that the block remains always at constant height h (i.e. does not slide down).Use the coordinate system drawn on the figure.
a.) Draw the free body force diagram for the block.

b.) Write the equations of Newton's $2^{\text {nd }}$ law of motion in x and y directions.
\square
c.) Using the equations in part (b), calculate the maximum value of T in terms of h, g, μ_{s}, and θ.

$$
T_{\max }=
$$

d.) Using the properties of uniform circular motion, calculate the radial acceleration of the block in terms of g, s, and .

$$
a_{r}=
$$

