Name:	Signature:
Surname:	Number:

KOÇ UNIVERSITY

College of Sciences PHYS 101 General Physics 1 Fall Semester 2015 Midterm1 Exam October 26, 2015 Monday, 19:00-21:00

Please read.

- Count to make sure that there are 5 pages in this question booklet
- Check your name, number, on front page, and student ID on each page.
- This examination is conducted with closed books and notes.

• Put all your personal belongings underneath your seat and make sure that pages of books or notebooks are not open.

- Absolutely no talking or exchanging anything (like rulers, erasers) during the exam.
- You must show all your work to get credit; you will not be given any points unless you show the details of your work (this applies even if your final answer is correct).
- Write neatly and clearly; unreadable answers will not be given any credit.
- If you need more writing space, use the backs of the question pages and put down the appropriate pointer marks.
- Make sure that you include units in your results.
- Make sure that you label the axis and have units in your plots.
- You are not allowed to use calculators during this exam.
- Turn off your mobile phones, and put away.
- You are not allowed to leave the class during the first 15 minutes, and last 15 minutes.
- Write your final answers into the boxes. No points will be given to unjustified answers. Incomplete calculations will not be graded.

			P101_In	dex:
1	2	3	4	Total

Exam Room:	P101_Index:
Student ID Number:	Signature:

1 (25 pts) A comet is orbiting the sun as shown in the figure. The distance *r* of the comet from the sun is given in terms of its angular coordinate θ as

 $r = \frac{a}{1 - \cos \theta}$

 $r_{\rm min} =$

 $\theta_{\min} =$

where *a* is constant.

a) (2 pts) What is the minimum distance r_{\min} between the comet and the sun? At which angle θ_{\min} is it realized?

b) (3 pts) Write down the vector \vec{r} when $\theta = \pi/3$ for the coordinate system given in the figure. $(\pi/3 = 60^{\circ})$

c) (5pts) Find a tangent vector \vec{t} to the orbit at $\theta = \pi/3$.

Our next goal is to calculate the velocity vector $\vec{v} = (v_x \hat{i} + v_y \hat{j})$ at $\theta = \pi/3$.

d) (5 pts) Find an algebraic equation relating v_x and v_y at $\theta = \pi/3$, using the fact that \vec{v} is tangent to the orbit.

e) (5 pts) For orbital motion, $\vec{r} \times \vec{v} = \vec{l}$, where \vec{l} is a constant vector. Evaluate the cross product to get a second algebraic relation between v_x and v_y at $\theta = \pi/3$.

f) (5 pts) Find the speed of the comet at $\theta = \pi/3$. $\sin(\pi/3) = \sqrt{3}/2$, $\cos(\pi/3) = 1/2$

Comet

$$\vec{t} =$$

Page 2 of 5

Exam Room:	P101_Index:
Student ID Number:	Signature:

2 (25 pts) A ball is thrown from the ground with a speed v_0 at an angle of θ_0 from the horizontal. The speed of the ball at its maximum height is $\sqrt{6/7}$ of its speed when it is at half of its maximum height. Calculate angle θ_0 .

Exam Room:	P101_Index:
Student ID Number:	Signature:

Q3 (25 pts) An object with mass *m* slides down a flat surface under the influence of gravity. The surface meets a vertical wall at an angle θ and the object is initially at rest at a distance d from the wall, as shown in the figure. The coefficient of friction for the contact between the object and the surface is $\mu(=\mu_s = \mu_k)$. a) (3 pts) Draw the free diagram for the object.

Express your answers to the questions below in terms of m, θ, d, μ gravitational acceleration g (you may not need all of them) and necessary unknowns.

b) (3 pts) Write down Newton's Second Law for the forces parallel to the surface (along *x*).

c) (3 pts) Write down Newton's Second Law for the forces perpendicular to the surface (along y).

d) (5pts) Find θ_{max} , maximum value of θ for which the object can slide down.

e) (5 pts) For $\theta \le \theta_{max}$, find the time it takes for the object to reach the vertical wall.

f) (6 pts) Imagine θ is adjustable while d is fixed. Calculate the angle θ_c at which the object reaches the wall in shortest time. You may want to use following identities: $\sin(2\theta) = 2\sin\theta\cos\theta$ $\cos(2\theta) = \cos^2\theta - \sin^2\theta$

 $\theta_{\rm max} =$

Exam Room:	P101_Index:
Student ID Number:	Signature:

Q4 (25 pts) A small block with mass m is placed inside an inverted cone that is rotating about a vertical axis with period T. The walls of the cone make an angle q with the vertical axis. The coefficient of static friction between the block and cone surface is μ_s . The block is initially at a height h above the apex of the cone. Calculate the maximum value of T such that the block remains always at constant height h (i.e. does not slide down). Use the coordinate system drawn on the figure.

a.) Draw the free body force diagram for the block.

b.) Write the equations of Newton's 2^{nd} law of motion in x and y directions.

c.) Using the equations in part (b), calculate the maximum value of *T* in terms of *h*, *g*, μ_s , and θ .

d.) Using the properties of uniform circular motion, calculate the radial acceleration of the block in terms of g, m_s , and q.

 $a_r =$

 $T_{\rm max} =$