PHYS 101: General Physics 1 KOÇ UNIVERSITY Fall

Fall Semester 2016

College of Sciences

Section 1

Quiz 11

December 16, 2016

Closed book. Duration: 10 minutes

Name: 1

Student ID:

Signature:

A rod of length l and mass m is initially vertical as in the figure and can freely rotate around a pivot on one end. A ball of mass m moving in the +x direction hits the rod on the other end, and comes to a stop immediately after the collision.

- a) Find the moment of inertia of the rod with respect to the pivot. Moment of inertia of the rod for an axis through its center is $\frac{1}{12}ml^2$
- b) If the angular velocity of the rod when it becomes horizontal is half its initial angular velocity right after the ball hits it, what is the initial velocity of the ball?
- c) What are the x and y components of the force the pivot exerts on the rod when the rod is horizontal.

T = I an + m d²

$$V/2$$
 $V/2$
 $V/$

College of Sciences

Section 3

{{ Quiz **廖**

December 16, 2016

Closed book. Duration: 10 minutes

Name:

Student ID:

Signature:

A rod of length l and mass m is initially horizontal as in the figure, and can freely rotate around a pivot on one end. A ball of mass m moving in the +y direction hits the rod on the other end, and comes to a stop immediately after the collision.

- a) Find the moment of inertia of the rod with respect to the pivot. Moment of inertia of the rod for an axis through its center is $\frac{1}{12}ml^2$
- b) If the angular velocity of the rod when it becomes vertical is half its initial angular velocity right after the ball hits it, what is the initial velocity of the ball?
- c) What are the x and y components of the force the pivot exerts on the rod right after the ball hits it and it starts rotating?

PHYS 101:General Physics 1 KOÇ UNIVERSITY

Fall Semester 2016

College of Sciences

Section 2

Quiz 🐠

December 16, 2016

Closed book. Duration: 10 minutes

Name:

Student ID:

Signature:

A rod of length l and mass m is initially vertical as in the figure, and can freely rotate around a pivot on one end. A ball of mass m moving in the +x direction hits the rod on the other end, and comes to a stop immediately after the collision.

- a) Find the moment of inertia of the rod with respect to the pivot. Moment of inertia of the rod for an axis through its center is $\frac{1}{12}ml^2$
- b) If the angular velocity of the rod when it becomes horizontal is twice its initial angular velocity right after the ball hits it, what is the initial velocity of the ball?
- c) What are the x and y components of the force the pivot exerts on the rod when the rod is horizontal.

$$T = Ion + md^{2}$$

$$= \frac{1}{12}mt^{2} + m(\frac{1}{2})^{2} = \frac{1}{3}mt^{2}$$

$$\times$$

b) After collision
$$E := E_1$$
; $\frac{1}{2}Iw^2 + mg^2 = \frac{1}{2}I(2w)^2$

$$w^2 = \frac{mgL}{3I} = \frac{3}{L}$$
(ollision $Li = L_f$

-mg. - /2 /2 /2 X

$$\alpha = -3m9$$

$$2L$$

Fall Semester 2016

PHYS 101: General Physics 1 KOÇ UNIVERSITY

College of Sciences

Section Quiz M

December 16, 2016

Closed book. Duration: 10 minutes

Name:

Student ID:

Signature:

A rod of length l and mass m is initially horizontal as in the figure, and can freely rotate around a pivot on one end. A ball of mass m moving in the -y direction hits the rod on the other end, and comes to a stop immediately after the collision.

- a) Find the moment of inertia of the rod with respect to the pivot. Moment of inertia of the rod for an axis through its center is $\frac{1}{12}ml^2$
- b) If the angular velocity of the rod when it becomes vertical is twice its initial angular velocity right after the ball hits it, what is the initial velocity of the ball?
- c) What are the x and y components of the force the pivot exerts on the rod right after the ball hits it and it starts rotating?

b) After collisse
$$\Xi i = \Xi f \Rightarrow \frac{1}{2} T w^2 = \frac{1}{2} T (2w^2) - mg \frac{1}{2} \frac{1}{2}$$