Name, Surname: «Name»	Signature:
Exam Room: «Exam_Room»	ID Number: «ID»

KOÇ UNIVERSITY
College of Sciences
PHYS 101 General Physics 1
Fall Semester 2017
Midterm 2 Exam
November 21st, 2017 Tuesday, 19:00-20:40

Please read.

- Count to make sure that there are 5 pages in this question booklet
- Check your name, number, on front page, and student ID on each page.
- This examination is conducted with closed books and notes.
- Put all your personal belongings underneath your seat and make sure that pages of books or notebooks are not open.
- Absolutely no talking or exchanging anything (like rulers, erasers) during the exam.
- You must show all your work to get credit; you will not be given any points unless you show the details of your work (this applies even if your final answer is correct).
- Write neatly and clearly; unreadable answers will not be given any credit.
- If you need more writing space, use the backs of the question pages and put down the appropriate pointer marks.
- Make sure that you include units in your results.
- Make sure that you label the axis and have units in your plots.
- You are allowed to use calculators during this exam.
- Turn off your mobile phones, and put away.
- You are not allowed to leave the class during the first 15 minutes, and last 15 minutes.
- Write your final answers into the boxes. No points will be given to unjustified answers. Incomplete calculations will not be graded.

P101_Index: «MT2_Index"

1	2	3	4	Total

Exam Room: «Exam_Room»	P101_Index: <MT2_Index»
Student ID Number: «ID»	Signature:

Q1-(25 pts) A block can slide on a sphere of radius R without friction (see figure). We push the block from the top of the sphere with initial speed v_{0} in the horizontal direction.
a) What is the speed of the block when it is at angle θ ? Assume the block is still on the sphere.

b) At what angle θ does the block stop touching the sphere?

c) For what values of v_{0} does the block not slide on the sphere at all?

Exam Room: «Exam_Room»	P101_Index: «MT2_Index»
Student ID Number: «ID»	Signature:

Q2-(25 pts) The potential energy of a particle of mass m which can move on the x axis is given by $U(x)=C\left(-\frac{x^{2}}{2 d^{2}}+\frac{x^{4}}{4 d^{4}}\right) . C, d$ are known positive constants.
a) Find all the equilibrium positions of the particle.

b) Qualitatively plot $U(x)$ and the related conservative force $F(x)$ for $-2 d<x<2 d$ on the graphs given below. You do not need to show your calculations.

c) If the particle is at $x=-d$, what is the minimum initial speed it needs to reach $x=d$?

Exam Room: «Exam_Room»	P101_Index: «MT2_Index»
Student ID Number: «ID»	Signature:

Q3-(25 pts) A block of mass m can slide on a platform of mass M which has a spring of uncompressed length d and spring constant k attached at one end. The surface of M consists of a horizontal part of length d and an inclined plane of angle 45° as in the figure. M can also slide horizontally on the ground, and there is no friction on any surface. We initially compress the spring by $d / 2$ together with m, and release the masses with no initial velocity (m is not tied to the spring). Assume that m always stays on
 M , and m can smoothly move from the horizontal surface to the inclined plane without loss of energy.
a) What is the speed of m with respect to the ground at the moment it reaches the bottom of the inclined surface?
b) What are the velocities of m and M at the moment m reaches its highest point on the inclined surface?
c) What is the maximum height m can reach on the inclined surface? Take the initial height to be 0 .
d) What is the maximum displacement of M from its initial position?

Exam Room: «Exam_Room»	P101_Index: «MT2_Index»
Student ID Number: «ID»	Signature:

Q4-(25 pts)

a) Find the moment of inertia of a uniform rod with mass M and length L about the axis that goes through one end of the rod.

b) Find the moment of inertia of a uniform right triangular shaped plate with mass M about the axis that coincides with the right side that has length h. Consider that the other right side has length d (See figure on the side). Express your answer as a function of M, d and h.

