Undergrad Exam Solution Fall 2019

a) Sol. Both linear and angular momenta are remain conserved before and after collision.
b) Sol. The new center of mass after collision $\frac{m \frac{L}{2}+m L}{2 m}=\frac{3 L}{4}$

The moment of inertia of combined object (point mass + rod) around its center of mass can be evaluated as; $I_{c m}=\left(\mathrm{m} \frac{L^{2}}{12}+\mathrm{m} \frac{L^{2}}{16}\right)+\mathrm{m} \frac{L^{2}}{16} \Rightarrow>=\mathrm{m} \frac{L^{2}}{12}+\mathrm{m} \frac{L^{2}}{8}=\frac{5 m L^{2}}{24}$.
c) Sol. By law of conservation of linear momentum

$$
\begin{aligned}
& P_{i}=P_{f} \\
& \mathrm{~m} v_{0}=2 \mathrm{~m} v_{c m}=>v_{c m}=v_{0} / 2 \text { (linear center of mass velocity) }
\end{aligned}
$$

And angular momentum conservation law

$$
\begin{aligned}
& L_{i}=L_{f} \\
& \mathrm{~m} v_{0} \frac{L}{4}=I_{c m} \omega \\
& \mathrm{~m} v_{0} \frac{L}{4}=\frac{\mathbf{5 m L ^ { 2 }}}{\mathbf{2 4}} \omega \quad \text { where } I_{c m}=\frac{\mathbf{5 m L ^ { 2 }}}{\mathbf{2 4}} \\
& \omega=\frac{\mathbf{6} v_{0}}{\mathbf{5 L}} \quad \text { required angular velocity and its direction is out of page! }
\end{aligned}
$$

d) Sol. The kinetic energy of the system

$$
\begin{aligned}
\mathrm{K} . \mathrm{E} & =\frac{1}{2}\left(2 \mathrm{~m} v_{c m}^{2}\right)+\frac{1}{2}\left(\frac{5 m L^{2}}{24}\right)\left(\frac{6 v_{0}}{5 L}\right)^{2} \\
= & >\frac{1}{2} \mathrm{~m}\left[2\left(\frac{v_{0}}{2}\right)^{2}+\frac{3}{10} v_{0}^{2}\right] \\
= & >\frac{1}{2} \mathrm{~m}\left[\frac{1}{2} v_{0}^{2}+\frac{3}{10} v_{0}^{2}\right] \\
\mathrm{K} . \mathrm{E} & =\frac{2}{5} m v_{0}^{2}
\end{aligned}
$$

Q. 2 a) Sol. From figure, we can write

$$
\begin{aligned}
& \vec{V}(\mathrm{t}=0)=v_{0} \hat{\mathrm{x}} \\
& \vec{\omega}(\mathrm{t}=0)=-\omega_{0} \hat{\mathrm{z}}
\end{aligned}
$$

$$
\begin{aligned}
& v_{0}>\omega_{0} \mathrm{R}=>\vec{f}_{k}=-f_{k} \hat{\mathrm{x}} \quad \text { (at touching point to ground) } \\
& \text { where } f_{k}=\mu_{k} \cdot \mathrm{~N}
\end{aligned}
$$

b) Sol. $\hat{\mathrm{y}}: \mathrm{N}-\mathrm{mg}=m a_{y} \quad$ since $a_{y}=0$

$$
\begin{aligned}
& =>\mathrm{N}-\mathrm{mg}=0=>\mathrm{N}=\mathrm{mg} \\
& \hat{\mathrm{x}}:-f_{k}=m a_{x}=>-\boldsymbol{\mu} \mathrm{mg}=m a_{x} \\
& \quad a_{x}=-\boldsymbol{\mu} \mathrm{g} \\
& \hat{\mathrm{z}}:-\mathrm{R} f_{k}=\mathrm{I} \boldsymbol{\alpha}=>-\boldsymbol{\mu} \mathrm{Rmg}=\frac{2}{5} m R^{2} \alpha \quad \boldsymbol{\alpha}=-\frac{5 \boldsymbol{\mu}}{2 R} g
\end{aligned}
$$

Center of mass speed;

$$
\begin{aligned}
& \hat{v}_{x}(\mathrm{t})=\left(v_{0}-\mu \mathrm{gt}\right) \hat{\mathrm{x}} \\
& \vec{V}(\mathrm{t})=\vec{\omega}(\mathrm{t}) \times \vec{R} \\
& =>=\left(-\omega_{0}-\frac{5 \mu}{2 R} g \mathrm{t}\right) \hat{\mathrm{z}} \times(-\mathrm{R}) \hat{\mathrm{y}} \\
& =>=-\left(v_{0}+\frac{5 \mu}{2} g \mathrm{t}\right) \hat{\mathrm{x}}
\end{aligned}
$$

Total speed of the body at touching point;

$$
\begin{equation*}
\hat{v}_{x}(\mathrm{t})+\vec{V}(\mathrm{t})=v_{0}-\omega_{0} \mathrm{R}-\frac{7 \mu}{2} g \mathrm{t} \tag{a}
\end{equation*}
$$

At $\mathrm{t}=\mathrm{T}$, we have rolling without slipping, therefore, the total velocity is 0 . Eq. (a) becomes

$$
\begin{gathered}
0=v_{0}-\omega_{0} \mathrm{R}-\frac{7 \mu}{2} g \mathrm{~T} \\
=>v_{0}-\omega_{0} \mathrm{R}=\frac{7 \mu}{2} g \mathrm{~T} \\
\mathrm{~T}=\frac{2}{7} \frac{\left(v_{0}-\omega_{0} \mathrm{R}\right)}{\mu g}
\end{gathered}
$$

Q. 3 a) Sol. The moment of inertia of the rod at pivot point.

$$
I_{c m}=\frac{1}{12} M l^{2}+\frac{1}{4} M l^{2}
$$

$$
\Rightarrow I_{c m}=\frac{1}{3} M l^{2}
$$

The torque produced by the rod during its motion

$$
\begin{aligned}
& \boldsymbol{\tau}=\mathrm{r} \times \vec{F} \Rightarrow \mathbf{\tau}=\mathrm{r} \vec{F} \operatorname{Sin} \theta \\
& \boldsymbol{\tau}=-\frac{l}{2} \mathrm{Mg} \sin \theta=\frac{1}{3} M l^{2} \cdot \frac{d \theta^{2}}{d t^{2}}
\end{aligned}
$$

For small deflection i.e. $\sin \theta \approx \theta$

$$
\frac{d \theta^{2}}{d t^{2}}+\frac{3 g}{2 l} \theta=0 . \quad \Rightarrow \quad \ddot{\theta}=\omega^{2} \theta \quad \omega=\sqrt{\frac{3 g}{2 l}}
$$

Required equation of motion, which is similar to simple harmonic motion.
b) Sol. The total inertia of the rod is

$$
I_{\text {total }}=\frac{1}{3} M l^{2}+m d^{2}
$$

Torque of the rod

$$
\boldsymbol{\tau}=-\frac{l}{2} M g \sin \theta-m g d \sin \theta
$$

$$
I_{\text {total }} \cdot \frac{d \theta^{2}}{d t^{2}}=-\frac{l}{2} M g \sin \theta-m g d \operatorname{Sin} \theta \quad \boldsymbol{\tau}=I_{\text {total }} \cdot \frac{d \theta^{2}}{d t^{2}}
$$

$$
\Rightarrow \frac{d \theta^{2}}{d t^{2}}+\frac{M g l / 2+m g d}{\frac{1}{3} M l^{2}+m d^{2}} \theta=0
$$

$$
\Rightarrow \ddot{\theta}=\omega^{2} \theta \quad \omega=\sqrt{\frac{M g l / 2+m g d}{\frac{1}{3} M l^{2}+m d^{2}}}
$$

$\Rightarrow \frac{3 g}{2 l}=>2 l=3 d \Rightarrow d=\frac{2 l}{3}$ is the point at which the frequency of the oscillation remains the same.
Q. 4 a) Sol. Equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

b) Sol. $\frac{d \boldsymbol{A}}{\boldsymbol{d t}}=$ Constant due to the conservation of angular moment (Kepler's $2^{\text {nd }}$ law)

i.e. $\Delta A_{1}=\Delta A_{2}$ if $\Delta t_{1}=\Delta t_{2}$
c) Sol. $\frac{\mathrm{a}^{3}}{\mathrm{~T}^{2}}=$ Constant \quad (Kepler's $3^{\text {rd }}$ law)

Proof. The centripetal force of the planet balance the gravitation
force i.e

$$
\begin{aligned}
& \quad \overrightarrow{\mathrm{F}}_{\mathrm{c}}=\overrightarrow{\mathrm{F}}_{\mathrm{g}} \\
& \frac{\mathrm{mv}^{2}}{\mathrm{r}}=\frac{\mathrm{GmM}}{\mathrm{r}^{2}} \\
& \mathrm{v}=\sqrt{\frac{\mathrm{GM}}{\mathrm{r}}}
\end{aligned}
$$

Since $v=r \omega=\frac{2 \pi r}{T} \quad \omega=\frac{2 \pi}{T}$
$\frac{2 \pi r}{\mathrm{~T}}=\sqrt{\frac{\mathrm{GM}}{\mathrm{r}}} \Rightarrow(2 \pi r / \mathrm{T})^{2}=\frac{\mathrm{GM}}{\mathrm{r}}$
$\mathrm{T}^{2}=\frac{4 \pi^{2}}{\mathrm{GM}} \mathrm{r}^{3}=>\frac{\mathrm{r}^{3}}{\mathrm{~T}^{2}}=\frac{\mathrm{GM}}{4 \pi^{2}}=$ constant

