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a) Sol.  Both linear and angular momenta are remain conserved before and after collision. 

b) Sol.  The new center of mass after collision  
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The moment of inertia of combined object (point mass + rod) around its center of mass 

can be evaluated as; 𝐼𝑐𝑚= (m
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c) Sol. By law of conservation of linear momentum 

                        𝑃𝑖=𝑃𝑓 

                       m𝑣0=2m𝑣𝑐𝑚=> 𝑣𝑐𝑚= 𝑣0/2 (linear center of mass velocity) 

And angular momentum conservation law 
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                            m𝑣0
𝐿

4
  = 𝐼𝑐𝑚ω  

                           m𝑣0
𝐿

4
  = 

𝟓𝒎𝑳𝟐

𝟐𝟒
ω      where 𝐼𝑐𝑚= 

𝟓𝒎𝑳𝟐

𝟐𝟒
 

                               ω =  
𝟔𝒗𝟎

𝟓𝑳
    required angular velocity and its direction is out of page! 

d) Sol.  The kinetic energy of the system 
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      Q. 2   a) Sol.  From figure, we can write                  

                                                                                                

                                  𝑉⃗ (t=0)= 𝑣0 x̂ 

                                 𝜔⃗⃗ (t=0)=-𝜔0ẑ 



                                 𝑣0> 𝜔0R =>𝑓 𝑘=-𝑓𝑘x̂   (at touching point to ground) 

                                 where  𝑓𝑘=𝜇𝑘 .N  

                         

             b) Sol.      ŷ:  N-mg= 𝑚𝑎𝑦       since 𝑎𝑦=0  

                                   => N-mg=0 => N=mg 

                                    x̂:  −𝑓𝑘=𝑚𝑎𝑥   => -𝝁mg=𝑚𝑎𝑥   

                                           𝑎𝑥 = -𝝁g 

                                    ẑ:  -R𝑓𝑘=I𝝰=> -𝝁Rmg =
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                         Center of mass speed;  

                                    𝑣̂𝑥(t)= (𝑣0 − μgt) x̂ 

                                  𝑉⃗ (t)= 𝜔⃗⃗ (t) × 𝑅⃗  
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                       Total speed of the body at touching point; 

                                      𝑣̂𝑥(t)+ 𝑉⃗ (t)= 𝑣0-  𝜔0R-
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                    At t=T, we have rolling without slipping, therefore, the total 

                    velocity is 0. Eq. (a) becomes 
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       Q. 3 a) Sol.   The moment of inertia of the rod at pivot point. 
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                       The torque produced by the rod during its motion 

                         𝛕= r×𝐹  => 𝛕= r𝐹 Sinθ 
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         Required equation of motion, which is similar to simple harmonic motion. 

        b) Sol. The total inertia of the rod is 
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            Torque of the rod                                                               
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  is the point at which the 

frequency of the oscillation remains the same. 

            Q.4 a) Sol. 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛  
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                   b) Sol. 
𝒅𝑨

𝒅𝒕
 = Constant due to the conservation of angular moment 

                                             (Kepler’s 2nd law) 

                         

                                                                                          
                        i.e. ΔA1= ΔA2 if Δt1= Δt2 

                    c) Sol. 
a3
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 = Constant         (Kepler’s 3rd law) 

                       Proof.  The centripetal force of the planet balance the gravitation 

                       force i.e                              F⃗ c=F⃗ g 
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