PHYS 101 General Physics 1 Fall Semester Midterm I Exam October 24, 2019 Thursday, 19:00-20:40

Q1-(25 pts) A car starts from rest and moves with constant acceleration $a=4m/s^2$ until it reaches v = 24 m/s speed. It then continues to move with this constant speed without changing direction.

a) For how long does the car accelerate? (8pts)

Sol. Initial velocity of the car $v_i = 0$ m/s

Final velocity $v_f = 24$ m/s

Acceleration of the car $a=4m/s^2$ time t?

Using first equation of kinematics;

$$v_f = v_i + at$$

By rearranging the terms $\mathbf{t} = \frac{v_f - v_i}{q}$

$$t=\frac{24m/s-0m/s}{4m/s^2}=6s$$

b) How much distance is covered by the car during the time it accelerates? (8 pts)

Sol. Distance covered by the car in 6s?

Recalling 2^{nd} equation of kinematics; $S = v_i t + 1/2 a t^2$

$$S = 0m/s \ 6s + 1/2 \times 4m/s^2 \times 6^2$$

 $S = 72m$

c) After reaching the speed of v = 24 m/s, how much longer should the car travel until its average speed becomes $\overline{v} = 20$ m/s? (9pts)

Ans;
$$v_{ave} = \frac{final \ distance - initial \ distance}{final \ time - initial \ time}$$
 (1)
 $v_{ave} = 20m/s$

Initial distance travelled by the car at initial time ($t_i = 0m/s$) is zero i.e., $s_i=0m$ Final distance travelled by the car after $t_f=(6+t)$ is $s_f = (72+24\times t)$

Substituting above values in (1)
$$20m/s = \frac{(72+24\times t)m-0}{(6+t)s-0} =>4t=48s =>t=12s$$
 (required time)

Q2-(25 pts) Super Mario wants to jump over the pole to reach the princess in the castle. He is to be thrown with speed $v_0 = 5\sqrt{5}$ m/s towards the pole with an angle θ (see the figure). The pole has a height of h = 3 m from the level Mario jumps, and it is away at a distance of d = 5 m. Find the tangent of minimum and maximum angles of throw (find tan θ for the angle θ shown in the figure) so that Mario can pass over the pole. (The gravitational acceleration, g = 10 m/s², if needed: sec₂ $\theta = 1 + tan_{2}\theta$)

Sol. The kinematic equations of motion for distance under the effect of gravity can be represented as

$$x(t) = v_{ox}t \text{ with } x(t) = 5 \text{ m} \quad (a) \quad g=0 \text{ along } x\text{-axis}$$

Vertical distance $y(t) = v_{oy}t - 1/2 \text{ g}t^2 \text{ with } y(t) = 3 \text{ m} \quad (b) \quad a= -g$
$$v_{ox} = 5\sqrt{5}\cos\theta; \quad v_{oy} = 5\sqrt{5}\sin\theta$$

Solving a for t

 $5 = 5\sqrt{5}\cos\theta \ t => t = \frac{1}{\sqrt{5}\cos\theta} \qquad \text{Solving b} \qquad 3 = \frac{5\sqrt{5}\sin\theta}{\sqrt{5}\cos\theta} - \frac{1}{2} \times 10 \left(\frac{1}{\sqrt{5}\cos\theta}\right)^2$ $3 = 5\tan\theta - 5(1/5\sec^2\theta) => 3 - 5\tan\theta - \sec^2\theta => \tan^2\theta - 5\tan\theta + 4 = 0 \qquad (\text{we used } 1 + \tan^2\theta = \sec^2\theta) \qquad \tan\theta \ (\tan\theta - 1) - 4(\tan\theta - 1) = 0 \qquad \text{Factorized } \tan\theta = 1, \ and \ \tan\theta = 4 \qquad \text{Therefore,} \qquad 1 \le \tan\theta \le 4$

Q3-(25 pts) Consider the incline with mass m_1 and the box with mass m_2 that are shown in the figure. A horizontal force F_1 is applied to m_1 from right and an another horizontal force F_2 is applied to m_2 from left. Assuming there is no friction between m_1 and m_2 nor m_1 and the ground, we want to find the accelerations \vec{a}_1 and \vec{a}_2 of these masses with respect to the ground. Take the gravitational acceleration as g and the angle of the incline as θ .

Hint: The acceleration of m_2 with respect to the ground can be written as $\vec{a}_2 = \vec{a}_{21} + \vec{a}_1$ where \vec{a}_{21} is the acceleration of m_2 with respect to m_1 .

a) Draw the free body diagrams for masses. (10pts)

Sol. The free diagram for *masses* m_1 and m_2 are sketched as follows;

b) Specify a coordinate system and apply Newton's laws to your diagrams. (9pts) Sol. $\vec{a}_2 = \vec{a}_{21} + \vec{a}_1$ $\vec{a}_1 = \vec{a}_1$ with respect to ground $\vec{a}_2 = (\vec{a}_{21} \cos \theta + \vec{a}_1) + \vec{a}_{21} \sin \theta$ g For m_2 ; $\Sigma \vec{F} = m_2 \vec{a}_2$ $\vec{F}_2 - \vec{N}_2 \sin \theta = m_2 (\vec{a}_{21} \cos \theta + \vec{a}_1)$ (1) For m_1 ; $\Sigma \vec{F} = m_1 \vec{a}_1$ $\vec{N}_1 = m_1 g + \vec{N}_2 \cos \theta$ (2) $\vec{N}_2 \cos \theta - m_2 g = m_2 \vec{a}_{21} \sin \theta$ (3) $\vec{N}_2 \sin \theta - \vec{F}_1 = m_1 \vec{a}_1$ (4)

c) Sol.
$$F_2 \cos \theta - m_2 g \sin \theta = m_2 (\vec{a}_{21} \cos \theta + \vec{a}_1)$$

=> $\cos \theta + m_2 \vec{a}_{21} \sin^2 \theta = m_2 (\vec{a}_{21} + \vec{a}_1 \cos \theta)$

$$\vec{F}_{2} - \vec{F}_{1} = m_{2}(\vec{a}_{1} + \vec{a}_{21}\cos\theta) + m_{1}\vec{a}_{1} => \vec{a}_{21}\cos\theta + (m_{1} + m_{2})\vec{a}_{1}$$
$$=> \vec{F}_{2}\cos^{2}\theta - m_{2}g\sin\theta\cos\theta - \vec{F}_{2} + \vec{F}_{1} => m_{2}\vec{a}_{1}\cos^{2}\theta - (m_{1} + m_{2})\vec{a}_{1}$$

Solving for \vec{a}_1 , and \vec{a}_{21} , we get

$$\vec{a}_{1} = \frac{\vec{F}_{1} - \vec{F}_{2} \sin^{2}\theta - m_{2}g\sin\theta\cos\theta}{-(m_{2}\sin^{2}\theta + m_{1})},$$
$$\vec{a}_{21} = \frac{\vec{F}_{2} - \vec{F}_{1}}{m_{2}\cos\theta} - \frac{m_{1} + m_{2}}{m_{2}\cos\theta} \vec{a}_{1}.$$

Q4-(25 pts) A small bead with mass *m* can slide with friction on a circular hoop that is in vertical plane and has a radius *R*. The hoop rotates at a constant angular frequency ω , i.e., it is a uniform circular motion. There is a range of $\omega_{min} < \omega < \omega_{max}$ for which the bead can stay in vertical equilibrium with angle β . Take the gravitational acceleration as *g* and the coefficient of static friction to be μ_s . We want to find ω_{max} .

a) Draw the free body diagram for the bead. (10pts)Sol. The free body diagram for bead of mass m is given below

b) Specify a coordinate system and apply Newton's laws to your diagrams. (8pts)

Sol. For x-axis; $Nsin\beta+F_scos\beta=m\omega^2Rsin\beta$ For y-aixs; $Ncos\beta-F_ssin\beta-mg=0$ Newton 3rd law

c) Extract $\omega_{\text{max.}}$ (7pts)

Sol. N-mgcos β = m ω^2 Rsin β =>N=mgcos β + m ω^2 Rsin β

 $F_{s} + \text{mgsin}\beta = m\omega^{2}\text{Rsin}\beta\cos\beta$ => $F_{s} = -\text{mgsin}\beta + m\omega^{2}\text{Rsin}\beta\cos\beta$ since, $F_{s} \le \mu_{s}\text{N}$ => $m\omega^{2}_{max}\text{Rsin}\beta\cos\beta$ -mgsin $\beta \le mg\mu_{s}\cos\beta + m\omega^{2}_{max}\text{R}\mu_{s}\sin^{2}\beta$

 $=> m\omega_{max}^{2} Rsin\beta(\cos\beta - \mu_{s}sin\beta) \le mg(\mu_{s}\cos\beta + \sin\beta)$ $=> \omega_{max}^{2} \le \sqrt{\frac{g(\mu_{s}\cos\beta + \sin\beta)}{Rsin\beta(\cos\beta - \mu_{s}sin\beta)}}$