PHYS 101 General Physics 1
 Fall Semester Midterm I Exam
 October 24, 2019 Thursday, 19:00-20:40

Q1-(25 pts) A car starts from rest and moves with constant acceleration $a=4 \mathrm{~m} / s^{2}$ until it reaches $v=24 \mathrm{~m} / \mathrm{s}$ speed. It then continues to move with this constant speed without changing direction.
a) For how long does the car accelerate? (8pts)

Sol. Initial velocity of the car $v_{i}=0 \mathrm{~m} / \mathrm{s}$
Final velocity $v_{f}=24 \mathrm{~m} / \mathrm{s}$
Acceleration of the car $a=4 \mathrm{~m} / s^{2} \quad$ time t ?
Using first equation of kinematics;

$$
v_{f}=v_{i}+a t
$$

By rearranging the terms $\mathrm{t}=\frac{v_{f}-v_{i}}{\boldsymbol{a}}$

$$
\mathrm{t}=\frac{24 m / s-0 m / s}{4 m / s^{2}}=6 \mathrm{~s}
$$

b) How much distance is covered by the car during the time it accelerates? (8 pts)

Sol. Distance covered by the car in $6 s$?
Recalling $2^{\text {nd }}$ equation of kinematics; $\mathrm{S}=v_{i} \mathrm{t}+1 / 2 \mathrm{a} t^{2}$

$$
\begin{aligned}
& S=0 \mathrm{~m} / \mathrm{s} 6 \mathrm{~s}+1 / 2 \times 4 \mathrm{~m} / \mathrm{s}^{2} \times 6^{2} \\
& \mathrm{~S}=72 \mathrm{~m}
\end{aligned}
$$

c) After reaching the speed of $v=24 \mathrm{~m} / \mathrm{s}$, how much longer should the car travel until its average speed becomes $\bar{v}=20 \mathrm{~m} / \mathrm{s}$? (9pts)
Ans; $\quad v_{\text {ave }}=\frac{\text { final distance }- \text {-initial distance }}{\text { final time-initial time }}$

$$
\begin{equation*}
v_{a v e}=20 \mathrm{~m} / \mathrm{s} \tag{1}
\end{equation*}
$$

Initial distance travelled by the car at initial time ($t_{i}=0 \mathrm{~m} / \mathrm{s}$) is zero i.e., $s_{i}=0 \mathrm{~m}$
Final distance travelled by the car after $t_{f}=(6+\mathrm{t})$ is $s_{f}=(72+24 \times \mathrm{t})$
Substituting above values in (1) $20 \mathrm{~m} / \mathrm{s}=\frac{(72+24 \times t) m-0}{(6+t) s-0}=>4 \mathrm{t}=48 \mathrm{~s} \Rightarrow>\mathrm{t}=12 \mathrm{~s}$ (required time)

Q2-(25 pts) Super Mario wants to jump over the pole to reach the princess in the castle. He is to be thrown with speed $v_{0}=5 \sqrt{5} \mathrm{~m} / \mathrm{s}$ towards the pole with an angle θ (see the figure).
The pole has a height of $h=3 \mathrm{~m}$ from the level Mario jumps, and it is away at a distance of d $=5 \mathrm{~m}$. Find the tangent of minimum and maximum angles of throw (find $\tan \theta$ for the angle θ shown in the figure) so that Mario can pass over the pole. (The gravitational acceleration, $g=10 \mathrm{~m} / \mathrm{s} 2$, if needed: $\sec 2 \theta=1+\tan 2 \theta$)

Sol. The kinematic equations of motion for distance under the effect of gravity can be represented as
$\mathrm{x}(\mathrm{t})=v_{o x} \mathrm{t}$ with $\mathrm{x}(\mathrm{t})=5 \mathrm{~m} \quad$ (a) $\quad \mathrm{g}=0$ along x -axis
Vertical distance $\mathrm{y}(\mathrm{t})=v_{\text {oy }} \mathrm{t}-1 / 2 \mathrm{~g} t^{2}$ with $\mathrm{y}(\mathrm{t})=3 \mathrm{~m}$
(b) $\quad a=-g$
$v_{o x}=5 \sqrt{5} \cos \theta ; \quad v_{o y}=5 \sqrt{5} \sin \theta$

Solving a for t
$5=5 \sqrt{5} \cos \theta \mathrm{t}=>\mathrm{t}=\frac{\mathbf{1}}{\sqrt{5} \cos \boldsymbol{\theta}} \quad$ Solving $\mathrm{b} \quad 3=\frac{5 \sqrt{5} \sin \theta}{\sqrt{5} \cos \theta}-1 / 2 \times 10\left(\frac{\mathbf{1}}{\sqrt{5} \boldsymbol{\operatorname { c o s } \theta}}\right)^{2}$
$3=5 \tan \theta-5\left(1 / 5 \sec ^{2} \theta\right)=>3-5 \tan \theta-\sec ^{2} \theta \Rightarrow \tan ^{2} \theta-5 \tan \theta+4=0 \quad$ (we used $\left.1+\tan ^{2} \theta=\sec ^{2} \theta\right) \quad \tan \theta(\tan \theta-1)-4(\tan \theta-1)=0 \quad$ Factorized
$\tan \theta=1$, and $\tan \theta=4 \quad$ Therefore, $1 \leq \tan \theta \leq 4$
Q3-(25 pts) Consider the incline with mass $m 1$ and the box with mass m_{2} that are shown in the figure. A horizontal force F_{1} is applied to m_{1} from right and an another horizontal force F_{2} is applied to m_{2} from left. Assuming there is no friction between m_{1} and m_{2} nor m_{1} and the ground, we want to find the accelerations \vec{a}_{1} and \vec{a}_{2} of these masses with respect to the ground. Take the gravitational acceleration as g and the angle of the incline as θ.

Hint: The acceleration of m_{2} with respect to the ground can be written as $\vec{a}_{2}=\vec{a}_{21}+$ \vec{a}_{1} where \vec{a}_{21} is the acceleration of m_{2} with respect to m_{1}.

a) Draw the free body diagrams for masses. (10pts)

Sol. The free diagram for masses m_{1} and m_{2} are sketched as follows;

b) Specify a coordinate system and apply Newton's laws to your diagrams. (9pts)

Sol. $\vec{a}_{2}=\vec{a}_{21}{ }^{\dagger}+\vec{a}_{1} \quad \vec{a}_{1}=\vec{a}_{1}^{\dagger} \quad$ with respect to ground

$$
\begin{equation*}
\vec{a}_{2}=\left(\vec{a}_{21} \cos \theta+\vec{a}_{1}\right)+\vec{a}_{21} \sin \theta \mathrm{~g} \tag{1}
\end{equation*}
$$

For $m_{2} ; \quad \Sigma \vec{F}=m_{2} \vec{a}_{2} \quad \vec{F}_{2}-\vec{N}_{2} \sin \theta=m_{2}\left(\vec{a}_{21} \cos \theta+\vec{a}_{1}\right)$
For $m_{1} ; \quad \sum \overrightarrow{\boldsymbol{F}}=m_{1} \vec{a}_{1} \quad \vec{N}_{1}=m_{1} g+\vec{N}_{2} \cos \theta$
$\vec{N}_{2} \cos \theta-m_{2} g=m_{2} \vec{a}_{21} \sin \theta$
(3) $\quad \vec{N}_{2} \sin \theta-\vec{F}_{1}=m_{1} \vec{a}_{1}$
c) Sol. $\vec{F}_{2} \cos \theta-m_{2} g \sin \theta=m_{2}\left(\vec{a}_{21} \cos \theta+\vec{a}_{1}\right)$

$$
\Rightarrow \cos \theta+m_{2} \vec{a}_{21} \sin ^{2} \theta=m_{2}\left(\vec{a}_{21}+\vec{a}_{1} \cos \theta\right)
$$

$$
\begin{aligned}
& \vec{F}_{2}-\vec{F}_{1}=m_{2}\left(\vec{a}_{1}+\vec{a}_{21} \cos \theta\right)+m_{1} \vec{a}_{1} \Rightarrow \vec{a}_{21} \cos \theta+\left(m_{1}+m_{2}\right) \vec{a}_{1} \\
& \quad \Rightarrow \vec{F}_{2} \cos ^{2} \theta-m_{2} g \sin \theta \cos \theta-\vec{F}_{2}+\vec{F}_{1} \Rightarrow m_{2} \vec{a}_{1} \cos ^{2} \theta-+\left(m_{1}+m_{2}\right) \vec{a}_{1}
\end{aligned}
$$

Solving for \vec{a}_{1}, and \vec{a}_{21}, we get

$$
\begin{aligned}
& \vec{a}_{1}=\frac{\vec{F}_{1}-\vec{F}_{2} \sin ^{2} \theta-m_{2} g \sin \theta \cos \theta}{-\left(m_{2} \sin ^{2} \theta+m_{1}\right)} \\
& \vec{a}_{21}=\frac{\vec{F}_{2}-\vec{F}_{1}}{m_{2} \cos \theta}-\frac{m_{1}+m_{2}}{m_{2} \cos \theta} \vec{a}_{1}
\end{aligned}
$$

Q4-(25 pts) A small bead with mass m can slide with friction on a circular hoop that is in vertical plane and has a radius R. The hoop rotates at a constant angular frequency ω, i.e., it is a uniform circular motion. There is a range of $\omega_{\min }<\omega<\omega_{\max }$ for which the bead can stay in vertical equilibrium with angle β. Take the gravitational acceleration as g and the coefficient of static friction to be μ_{s}. We want to find $\omega_{\max }$.

a) Draw the free body diagram for the bead. (10pts)

Sol. The free body diagram for bead of mass m is given below

b) Specify a coordinate system and apply Newton's laws to your diagrams. (8pts)

Sol. For x -axis; $\mathrm{N} \sin \beta+F_{s} \cos \beta=\mathrm{m} \omega^{2} \mathrm{R} \sin \beta$
For y -aixs; $\quad \mathrm{N} \cos \beta-F_{S} \sin \beta-\mathrm{mg}=0 \quad$ Newton $3^{\text {rd }}$ law
c) Extract ω max. (7pts)

Sol. $\mathrm{N}-\mathrm{mg} \cos \beta=\mathrm{m} \omega^{2} \mathrm{R} \sin \beta=\mathrm{N}=\mathrm{mg} \cos \beta+\mathrm{m} \omega^{2} \mathrm{R} \sin \beta$

$$
\begin{aligned}
& F_{s}+m g \sin \beta=\mathrm{m} \omega^{2} \mathrm{R} \sin \beta \cos \beta \\
& =>F_{s}=-\mathrm{mg} \sin \beta+\mathrm{m} \omega^{2} \mathrm{R} \sin \beta \cos \beta \\
& \operatorname{since}, F_{s} \leq \mu_{S} \mathrm{~N} \\
& =>\mathrm{m} \omega^{2}{ }_{\max } \mathrm{R} \sin \beta \cos \beta-\mathrm{mg} \sin \beta \leq m g \mu_{s} \cos \beta+\mathrm{m} \omega^{2}{ }_{\max } \mathrm{R} \mu_{s} \sin ^{2} \beta \\
& \Rightarrow \mathrm{~m} \omega^{2}{ }_{\text {max }} \mathrm{R} \sin \beta\left(\cos \beta-\mu_{s} \sin \beta\right) \leq m g\left(\mu_{s} \cos \beta+\sin \beta\right) \\
& \Rightarrow \omega^{2}{ }_{\max } \leq \sqrt{\frac{g\left(\mu_{s} \cos \beta+\sin \beta\right)}{\mathrm{R} \sin \beta\left(\cos \beta-\mu_{s} \sin \beta\right)}}
\end{aligned}
$$

