< All Assignments

- Midterm 1 - Problem 1

Midterm 1 - Problem 1

Due: 12:22pm on Sunday, November 15, 2020
You will receive no credit for items you complete after the assignment is due. Grading Policy

Problem 1

Consider the vector $\vec{A}=2.0 \hat{i}-4.0 \hat{k}$.

Part A

Construct a unit vector that is parallel to \vec{A}.
Enter the x, y, and z components of the vector separated by commas.
ANSWER:

$$
\begin{aligned}
& a_{x}, a_{y}, a_{z}=\frac{A x}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, 0, \frac{A z}{\sqrt{\left(A x^{2}+A z^{2}\right)}}=0.45,0,-0.89 \\
& \quad \text { Also accepted: } \frac{A x}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, 0, \frac{A z}{\sqrt{\left(A x^{2}+A z^{2}\right)}}=0.447,0,-0.894, \frac{A x}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, 0, \frac{A z}{\sqrt{\left(A x^{2}+A z^{2}\right)}}=0.45,0,-0.89
\end{aligned}
$$

Part B

Construct a unit vector that is antiparallel to \vec{A}.
Enter the x, y, and z components of the vector separated by commas.
ANSWER:

$$
\begin{aligned}
& b_{x}, b_{y}, b_{z}=\frac{-A x}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, 0, \frac{-A z}{\sqrt{\left(A x^{2}+A z^{2}\right)}}=-0.45,0,0.89 \\
& \text { Also accepted: } \frac{-A x}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, 0, \frac{-A z}{\sqrt{\left(A x^{2}+A z^{2}\right)}}=-0.447,0,0.894, \frac{-A x}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, 0, \frac{-A z}{\sqrt{\left(A x^{2}+A z^{2}\right)}}=-0.45,0,0.89
\end{aligned}
$$

Part C

Construct two unit vectors that are perpendicular to \vec{A} and that have no y-component.
Enter the x, y, and z components of the vectors separated by commas.
ANSWER:

$$
\begin{aligned}
& c_{x}, c_{y}, c_{z}, d_{x}, d_{y}, d_{z}=\frac{A z}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, 0, \frac{-A x}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, \frac{-A z}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, 0, \frac{A x}{\sqrt{\left(A x^{2}+A z^{2}\right)}}=-0.89,0,-0.45,0.89,0,0.45 \\
& \text { Also accepted: } \frac{-A z}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, 0, \frac{A x}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, \frac{A z}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, 0, \frac{-A x}{\sqrt{\left(A x^{2}+A z^{2}\right)}}=0.89,0,0.45,-0.89,0,-0.45, \frac{A z}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, 0, \\
& \frac{-A x}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, \frac{-A z}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, 0, \frac{A x}{\sqrt{\left(A x^{2}+A z^{2}\right)}}=-0.894,0,-0.447,0.894,0,0.447, \frac{-A z}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, 0, \frac{A x}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, \frac{A z}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, 0, \\
& \frac{-A x}{\sqrt{\left(A x^{2}+A z^{2}\right)}}=0.894,0,0.447,-0.894,0,-0.447, \frac{A z}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, 0, \frac{-A x}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, \frac{-A z}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, 0, \frac{A x}{\sqrt{\left(A x^{2}+A z^{2}\right)}}=-0.89,0,-0.45,0.89,0, \\
& 0.45, \frac{-A z}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, 0, \frac{A x}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, \frac{A z}{\sqrt{\left(A x^{2}+A z^{2}\right)}}, 0, \frac{-A x}{\sqrt{\left(A x^{2}+A z^{2}\right)}}=0.89,0,0.45,-0.89,0,-0.45
\end{aligned}
$$

< All Assignments

Mastering Physics

with Adaptive Follow-Ups
Copyright © 2021 Pearson. All rights reserved.
Legal Notice Privacy Policy Permissions
< All Assignments

- Midterm 1 - Problem 2

Overview Diagnostics Print View with Answers

Midterm 1 - Problem 2

Due: 12:47pm on Sunday, November 15, 2020
You will receive no credit for items you complete after the assignment is due. Grading Policy

Problem 2

Description:

Suppose you are inside a rocket on the ground at $t=0 \mathrm{~s}$. The rocket is fired from the ground with a constant upward acceleration of $6.0 \mathrm{~m} / \mathrm{s}^{2}$. Suppose you shut the engine off after 10.8 s , and step off the rocket. Assume that the rocket is in free fall after its engine is shut off, and ignore the effects of air resistance.

Part A

What is the maximum height above ground reached by the rocket?
Express your answer with the appropriate units.
ANSWER:

$$
\begin{aligned}
h= & \frac{t_{1}^{2}}{2}\left(a_{1}+\frac{a_{1}^{2}}{9.8}\right)=564 \mathrm{~m} \\
& \text { Also accepted: } \frac{t_{1}^{2}}{2}\left(a_{1}+\frac{a_{1}^{2}}{9.8}\right)=564 \mathrm{~m}, \frac{t_{1}^{2}}{2}\left(a_{1}+\frac{a_{1}^{2}}{9.8}\right)=564 \mathrm{~m}
\end{aligned}
$$

Part B

After the engine is shut off, how much time it takes for the rocket to crash into the ground?
Express your answer with the appropriate units.
ANSWER:

$$
\mathrm{T}=\frac{a_{1} t_{1}}{9.8}\left(1+\sqrt{\left(1+\frac{9.8}{a_{1}}\right)}\right)=17.3 \mathrm{~s}
$$

Part C

Suppose you deploy a jet pack strapped on your back 6.8 s after leaving the rocket, and then you have a constant downward acceleration with magnitude $2.8 \mathrm{~m} / \mathrm{s}^{2}$. How far are you above the ground when the rocket crashes into the ground?

Express your answer with the appropriate units.
ANSWER:

$$
\begin{aligned}
h= & \frac{9.80-a_{2}}{2}\left(\frac{a_{1} t_{1}+\sqrt{a_{1}^{2} t_{1}^{2}+9.80 a_{1} t_{1}^{2}}}{9.80}-t_{2}\right)^{2}=389 \mathrm{~m} \\
& \text { Also accepted: } \frac{9.80-a_{2}}{2}\left(\frac{a_{1} t_{1}+\sqrt{a_{1}^{2} t_{1}^{2}+9.80 a_{1} t_{1}^{2}}}{9.80}-t_{2}\right)^{2}=389 \mathrm{~m}, \frac{9.80-a_{2}}{2}\left(\frac{a_{1} t_{1}+\sqrt{2 \cdot 9.8 \operatorname{sigdig}\left(\frac{t_{1}^{2}\left(a_{1}+\frac{\left.a_{1}{ }^{2}\right)}{9.8}\right), 2}{2}\right.}}{9.80}-t_{2}\right)=386 \mathrm{~m}, \\
& \frac{9.80-a_{2}}{2}\left(\frac{a_{1} t_{1}+\sqrt{2 \cdot 9.8 \operatorname{sigdig}\left(\frac{t_{1}^{2}}{2}\left(a_{1}+\frac{a_{1}^{2}}{9.8}\right), 2\right)}}{9.80}-t_{2}\right)^{2}=386 \mathrm{~m}, \frac{9.80-a_{2}}{2}\left(\frac{a_{1} t_{1}+\sqrt{a_{1}^{2} t_{1}^{2}+9.80 a_{1} t_{1}^{2}}}{9.80}-t_{2}\right)^{2}=389 \mathrm{~m}
\end{aligned}
$$

< All Assignments

University Physics with Modern Physics in SI Units, 15e
Young/Freedman
yilmaz98291
Ends: 02/14/21

Mastering Physics with Adaptive Follow-Ups

Copyright © 2021 Pearson. All rights reserved. Legal Notice Privacy Policy Permissions

- Midterm 1 - Problem 3

Midterm 1 - Problem 3

Due: 1:12pm on Sunday, November 15, 2020
You will receive no credit for items you complete after the assignment is due. Grading Policy

Problem 3

 width of the wall is small enough to be ignored. You throw the ball from a height of 1.4 m above the ground and at an angle of 44.0° above the horizontal.

Part A

What minimum initial speed must the ball have as it leaves your hand to go over the wall?
Express your answer with the appropriate units.
ANSWER:

$$
\begin{aligned}
& v_{0}=\sqrt{\frac{\text { dist }^{2} \cdot 9.8}{(\text { disttan }(\theta)-(\text { fence }-h e i g h t)) \cdot 2(\cos (\theta))^{2}}}=14.5 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { Also accepted: } \sqrt{\frac{\text { dist }^{2} \cdot 9.81}{(\text { disttan }(\theta)-(\text { fence }-h e i g h t)) \cdot 2(\cos (\theta))^{2}}}=14.5 \frac{\mathrm{~m}}{\mathrm{~s}}, \sqrt{\frac{\text { dist }^{2} \cdot 9.8}{(\text { disttan }(\theta)-(\text { fence }-h e i g h t)) \cdot 2(\cos (\theta))^{2}}}=14.5 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Part B

For the initial velocity calculated in the previous part, what horizontal distance beyond the wall will the ball land on the ground?

Express your answer with the appropriate units.
ANSWER:

$$
\begin{aligned}
& =8.51 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& =8.51 \mathrm{~m} \text {, }
\end{aligned}
$$

$=8.51 \mathrm{~m}$

< All Assignments

University Physics with Modern Physics in SI Units, 15e
Young/Freedman
yilmaz98291
Ends: 02/14/21

Mastering Physics
 with Adaptive Follow-Ups

Copyright © 2021 Pearson. All rights reserved.
Legal Notice Privacy Policy Permissions
< All Assignments

- Midterm 1 - Problem 4

Midterm 1 - Problem 4

Due: 1:37pm on Sunday, November 15, 2020
You will receive no credit for items you complete after the assignment is due. Grading Policy

Phys101F20Mt1Q4

Description:

The figure shows a simple pendulum consisting of a ball of mass $m=500$ grams, suspended by a light string of length $R=55$ cm . At the instant shown, the net acceleration of the ball makes an angle 45 degrees with the string and has a magnitude 1.0 $\mathrm{m} / \mathrm{s}^{2}$.

Part A - Calculate the speed of the ball.

ANSWER:
$v=\sqrt{\frac{0.01 R a}{\sqrt{2}}}=0.624 \mathrm{~m} / \mathrm{s}$

Part B-Calculate the tension on the string ANSWER:

$$
T=0.5 \cdot 9.81\left(\frac{a \sqrt{2}}{2 \cdot 9.81}+\sqrt{1-\left(\left(\frac{a \sqrt{2}}{2 \cdot 9.81}\right)^{2}\right)}\right)=5.25 \mathrm{~N}
$$

< All Assignments

University Physics with Modern Physics in SI Units, 15e

 Young/Freedmanyilmaz98291
Ends: 02/14/21

Mastering Physics
 with Adaptive Follow-Ups

Copyright © 2021 Pearson. All rights reserved
Legal Notice Privacy Policy Permissions
< All Assignments

- Midterm 1 - Problem 5
Overview
Diagnostics
Print View with Answers

Midterm 1 - Problem 5

Due: 2:02pm on Sunday, November 15, 2020
You will receive no credit for items you complete after the assignment is due. Grading Policy

Phys101F20Mt1Q5

In the figure block A has a mass $m_{A}=5.0 \mathrm{~kg}$ and placed on the inclined surface of a wedge shaped block of mass M (a numerical value of M is not required for this problem). Another block B with mass m_{B} is attached to block A by an ideal (massless) string-pulley system and suspended between the vertical side of the wedge and a wall. All adjacent surfaces are in contact during motion. Only the ground is frictionless. The coefficient of kinetic friction at all other surfaces is $\mu=0.35$. The wedge angle is $\theta=55$ degrees. It is observed that blocks A and B move with constant speed (block B moves down), while the wedge block remains stationary.

Part A - Calculate the tension on the string.

Draw free body diagram.
ANSWER:

$$
T=m_{A} \cdot 9.81\left(\mu \cos \left(\frac{\theta \pi}{180}\right)+\sin \left(\frac{\theta \pi}{180}\right)\right)=50.0 \mathrm{~N}
$$

Part B-Calculate the net normal force on block B.
Draw free body diagram.
ANSWER:

```
N NetonB}=0\textrm{N
```


Part C-Calculate the mass of the block B.

Draw free body diagram.
ANSWER:

$$
m_{\mathrm{B}}=m_{A}\left(\mu \cos \left(\frac{\theta \pi}{180}\right)+\sin \left(\frac{\theta \pi}{180}\right)\right)\left(1+2 \mu \cos \left(\frac{\theta \pi}{180}\right)\right)=7.15 \mathrm{~kg}
$$

< All Assignments

University Physics with Modern Physics in SI Units, 15e Young/Freedman
yilmaz98291
Ends: 02/14/21

Mastering Physics
 with Adaptive Follow-Ups

Copyright © 2021 Pearson. All rights reserved.
Legal Notice Privacy Policy Permissions

Problem 1
d.)

$$
\vec{A}=2 \hat{\imath}-5 \hat{k}
$$

First find the length of \vec{A}

$$
\begin{gathered}
|\vec{A}|=\sqrt{2^{2}+5^{2}}=\sqrt{4+2 r}=\sqrt{29} \\
\hat{a}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}+a_{7} \hat{k}=\frac{\vec{A}}{\mid \overrightarrow{A \mid}}=\frac{2}{\sqrt{29}} \hat{\imath}-\frac{5}{\sqrt{2 g}} \hat{k}= \\
=0,37 \hat{\imath}-0,93 \hat{k}=\vec{l}
\end{gathered}
$$

Dividing the vector with its own norm (length) gives the unit vector.
b) The vector $\vec{B}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ to be perpensiculon to \vec{t}, means
that:

$$
\begin{aligned}
\vec{A} \cdot \vec{B} & =|\vec{A}||\vec{B}| \cos \alpha \\
& { }^{B} \uparrow^{\alpha} \quad \cos 90^{\circ}=0
\end{aligned}
$$

$$
\begin{gathered}
\overrightarrow{A \cdot} \cdot \vec{B}=0=2 b_{1}-5 b_{3} \\
2 b_{1}=5 b_{3} \\
b_{1}=\frac{5}{2} b_{3}
\end{gathered}
$$

$\vec{B}=\frac{5}{2} b_{3} \hat{\imath}+b_{3} \hat{k}$, there are infinite such vectors, we choose one jest for fun, $b_{3}=2 \Rightarrow \vec{B}=5 \hat{\imath}+2 \hat{k}$
c) the unit vector antiparallel to \vec{A} means that it points in the opposite direction from \widehat{a}.

$$
\hat{Q}_{\text {ansiponater }}=-\hat{v}=-0,37 \hat{c}+0,93 \hat{k}
$$

Problem 2
This is similar to what we have solved so fer!

* for ll s the distance treculled is

$$
d_{1}=\frac{1}{2} a t^{2}+v_{0}=0+\frac{1}{2} a t^{2}=\frac{1}{2} 7 \cdot 11^{2}=423,5 .
$$

When the engine turns of y, it already moves with velocity

$$
v=a t=7 \cdot 11=77 \mathrm{~m} / \mathrm{s}^{2}
$$

It will keep moving upward until the Earth's gravity pulls it, $\quad t=\frac{v}{g}=\frac{77}{10}=7,7 \mathrm{~s}$
So the distance travelled during deccelasotion is

$$
d_{2}=v_{0} t-\frac{g t^{2}}{2}=77 \cdot 7,7-\frac{10}{2} \cdot(7,7)^{2}=296,45 \mathrm{~m}
$$

total distance is $\phi=d_{1}+d_{2}=296,45+423,5=726 \mathrm{~m}$
B) $d=\frac{1}{2} g t^{2} \Rightarrow t=\sqrt{\frac{2 d}{g}}=\sqrt{\frac{2 \cdot 726}{9,8}}=\sqrt{148}=12,16 \mathrm{~s}$
t is the time from the highest distance to the ground; to reach the maximum hightress, we need $7,7 \mathrm{~s}$ total time from the engine power oft to lond wash is: $t+t_{1}=12,16+7,2 \approx 20 \mathrm{~s}$
c) ot time t_{1}

$$
\begin{aligned}
& h_{2}=h_{1}+a_{1} t_{1} t_{2}-\frac{1}{2} g t^{2} \\
& v_{2}=v_{1}-g t_{2}=a_{1} t_{1}-\rho t_{2} \\
& h_{f e}^{\text {men }}=h_{2}+\left(a_{1} t_{1}-g t_{2}\right)\left(t_{t e}-t_{2}\right)-\frac{1}{2} a_{2}\left(t_{f e}-t_{2}\right)^{2} \\
&=743 \mathrm{~m}
\end{aligned}
$$

Problem 3

(A) There is a difference $5,8-2=3,8 \mathrm{~m}$

$$
\begin{gathered}
d=(v \cos \alpha) t \\
H=h+v \sin \alpha t-\frac{1}{2} g t^{2}=h+v(\cos \alpha) t \frac{\sin \alpha}{\cos \alpha}-\frac{1}{2} g\left(\frac{d}{v \cos \alpha}\right)^{2} \\
H-h-d \tan \alpha=-\frac{1}{2} g\left(\frac{d}{v \cos \alpha}\right)^{2} \\
\frac{2}{g}(h+d \tan \alpha-H)=\left(\frac{d}{v \cos \alpha}\right)^{2} \Rightarrow v^{2}=\frac{d^{2}}{\cos ^{2} \alpha} \frac{g}{2}(h+d \tan \alpha-H) \\
v=\frac{d}{\cos \alpha}\left(\frac{g}{2}(h+d \tan \theta-H)\right)^{1 / 2} \\
v=\frac{12}{\cos 52}\left(\frac{10}{2}(2+12 \tan 52-5,8)\right)^{1 / 2}=12,7 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

(B)

$$
\text { b) } \begin{array}{ll}
d+D=v \cos \alpha t_{1} & \frac{1}{2} g t_{1}^{2}-v \sin \alpha t_{1}+h=0 \\
0=h+v \sin \alpha t_{1}-\frac{1}{2} g t_{1}^{2} & \Delta \\
D=v \cos \alpha t_{1}-d a c=v^{2} \sin ^{2} \alpha-2 g h \\
& t_{1}=\frac{v-\sin \alpha+\sqrt{v^{2} \sin ^{2} \alpha+2 g h}}{g}= \\
& =\frac{v}{g} \sin \alpha+\sqrt{\left(\frac{v \sin \alpha}{g}\right)^{2}+\frac{2 h}{g}}
\end{array}
$$

$$
\begin{aligned}
& D=v \cos \alpha\left(\frac{v \operatorname{st}}{f} \sin \alpha+\sqrt{\left(\frac{v}{f} \sin \alpha\right)^{2}+\frac{2 h}{g}}\right)-d \\
& D=12,7 \cos 52\left(\frac{12,7}{10} \sin 52+\sqrt{\left(\frac{12,7}{10} \sin 22\right)^{2}+\frac{2 \cdot 2}{10}}\right)-12=5,38 \mathrm{~m}
\end{aligned}
$$

Q. 4

$m g$

Identify: The ball of the pendulum makes a non-uniform circular motion.
Setup: $\vec{a}_{\text {net }}=\vec{a}_{\text {rad }}+\vec{a}_{\text {tan }}$

$$
a_{\text {rad }}=a_{\text {net }} \cos (\alpha) \quad a_{\text {tan }}=a_{\text {not }} \sin (\alpha)
$$

$$
\alpha=45^{\circ} \quad \cos (\alpha)=\sin (\alpha) \Rightarrow a_{\text {cad }}=a_{\tan }
$$

$$
a_{\mathrm{rad}}=\frac{v^{2}}{R}
$$

Apply Newton's $2^{\text {nd }}$ law through FBD

$$
\begin{aligned}
& m a_{\mathrm{rad}}=T-m g \cos (\theta) \\
& m a_{\text {tam }}=m g \sin (\theta)
\end{aligned}
$$

Execute:

$$
\begin{aligned}
& \text { PART-A: } \begin{aligned}
V & =\sqrt{a_{\text {rad }} R}=\sqrt{a_{\text {net }} R \cos \left(45^{\circ}\right)}=\sqrt{\frac{a_{\text {net }} R}{\sqrt{2}}} \\
\text { PART-Bि } \quad T & =\underbrace{m a_{\text {rad }}}_{\text {mad }}+m g \cos (\theta)=m g(\sin \theta+\cos \theta) \\
& =\sin \theta=\frac{a_{\text {tan }}}{g}=\frac{a_{\text {net }}}{\sqrt{2} g} \quad \cos \theta=\sqrt{1-\sin ^{2} \theta}=\sqrt{1-\left(\frac{a_{\text {net }}}{\sqrt{2} g}\right)^{2}} \\
T & =m g\left(\frac{a_{\text {net }}}{\sqrt{2} g}+\sqrt{1-\left(\frac{a_{\text {net }}}{\sqrt{2} g}\right)^{2}}\right)
\end{aligned}
\end{aligned}
$$

Q.5)

Identify: Motion with constant speed. Apply
setup: Draw free bodily diagrams

In each FBD, use the encircled coordinate systems.
Execute: $m_{A}: \quad \sum F_{x}=T-f_{k A}-m g \sin \theta=0$

$$
\begin{gather*}
\sum F_{y}=N_{A}-m_{A} g \cos \theta=0 \tag{2}\\
f_{h A}=\mu_{k} N_{A}
\end{gather*}
$$

$$
\begin{align*}
M: \quad \sum F_{x}= & -N_{B}+f_{k A} \cos \theta+N_{A} \sin \theta=0 \tag{4}\\
\sum F_{y}= & N_{\text {ground }}+f_{h A} \sin \theta-f_{k B}-N_{A} \cos \theta-M_{g}=0 \tag{5}\\
m_{B}: \sum F_{x}= & N_{B}-N_{\text {wall }}=0 \tag{6}\\
\sum F_{y}= & T+f_{k B}+f_{\text {hwall }}-m_{B} g=0 \tag{7}\\
& f_{\text {lh B }}=\mu_{h} N_{B} \tag{8}\\
& f_{\text {leal }}=\mu_{l} N_{\text {wall }} \tag{9}
\end{align*}
$$

PART-A : Use equations $(1,2,3): T=m g\left(\sin \theta+\mu_{k} \cos \theta\right)$
PART-B: Use (6) Net normal force on $B=N_{B}-N_{\text {wall }}=0$
PART-C: Use (4) $\quad N_{B}=N_{A}\left(\mu_{k} \cos \theta+\sin \theta\right)=\mu_{k} m_{g} \cos \theta\left(\mu_{k} \cos \theta+\sin \theta\right)$
Use $(6,8,9) \quad f_{h B}=\mu_{k} N_{B} \quad f_{\text {wall }}=f_{h B}$
Use (7) $\quad m_{B}=\frac{1}{g}\left(T+2 \mu_{k} N_{B}\right)$ (put $T \& N_{B}$ from (10), (11))

