PHYS 101: General Physics 1

KOÇ UNIVERSITY

Spring Semester 2015

College of Arts and Sciences

Section

Quiz 1-1

February 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Given two vectors $\vec{A} = 2\hat{\imath} - \hat{\jmath}$, and $\vec{B} = -\hat{\imath} + b\hat{\jmath} + c\hat{k}$, where b and c are some constants. If $|\vec{B}| = 3$ and \vec{A} and \vec{B} are perpendicular, find the angle the vector \vec{B} makes with the positive z-axis (you can give your result in terms of inverse trigonometric functions)

$$|\vec{B}| = 3 \Rightarrow |\vec{B}|^2 = \vec{B} \cdot \vec{B} = 1 + b^2 + c^2 = 9 \Rightarrow b^2 + c^2 = 8$$

$$\vec{A} \cdot \vec{B} = -2 - b = 0 \Rightarrow b = -2 \Rightarrow 4 + c^2 = 8 \Rightarrow c^2 = 4$$

$$c = \pm 2$$

B1 + z-axis:+k

$$\vec{R} \cdot \hat{k} = |\vec{B}| \cdot |\vec{k}| \cos \theta$$

$$c = 3.1 \cdot \cos \theta \Rightarrow \cos \theta = \pm \frac{3}{3}$$

$$O = \arccos\left(\frac{\pm 2/3}{3}\right)$$

PHYS 101: General Physics 1

KOÇ UNIVERSITY

Spring Semester 2015

College of Arts and Sciences

Section

Quiz 1-2

February 2015

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Two perpendicular unit vectors \hat{u} and \hat{v} satisfy $\hat{u} \times \hat{v} = \frac{1}{\sqrt{2}}(\hat{i} - \hat{j})$. If \hat{u} has no x-component, find \hat{v} .(Hint: write \hat{u} and \hat{v} as three dimensional vectors unknown components and determine the components of \hat{v})

$$\hat{u} = u_1 \hat{t} + u_2 \hat{j} + u_3 \hat{t} \qquad u_1 = 0 \quad (\text{no } x - \text{comprised})$$

$$\hat{u} = u_1 \hat{t} + u_2 \hat{j} + u_3 \hat{t} \qquad u_2 \hat{t} \qquad u_3 \hat{t} \qquad u_4 \hat{t} = 0 \quad (\text{pupendicular})$$

$$\hat{u} \times \hat{u} = 0 \quad (\text{pupendicular})$$

$$\hat{u} \times \hat{u} = 0 \qquad u_3 \hat{u}_3 = 0 \qquad u_4 \hat{u}_3 \qquad u_4 \hat{u}_3 \qquad u_5 \hat{t} + (u_3 \hat{u}_1) \hat{f} + (u_2 \hat{u}_1) \hat{f} \qquad u_4 \hat{u}_3 = 0$$

$$\hat{u} \times \hat{u} = 0 \qquad u_3 \hat{u}_1 = 0 \qquad u_3 \hat{u}_1 = 0 \qquad u_4 \hat{u}_2 = 0 \qquad u_4 \hat{u}_3 = 0$$

$$\hat{u}_1 = 0 \qquad u_4 \hat{u}_1 = 0 \qquad u_4 \hat{u}_2 = 0 \qquad u_4 \hat{u}_3 = 0 \qquad u_4 \hat{u}_4 = 0 \qquad u_4 \hat$$

PHYS 101: General Physics 1

KOÇ UNIVERSITY

Spring Semester 2015

College of Arts and Sciences

Section

Quiz 1-3

February 2015

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

At an instant the velocity of a particle is given as $\vec{v} = 3\hat{\imath} - \hat{\jmath}$ (m/s). The force acting on the particle is $\vec{F} = \hat{\imath} + \hat{\jmath} - \hat{k}$ (N). If we consider the force vector as the sum of two vectors $\vec{F} = \vec{F}_1 + \vec{F}_2$ such that \vec{F}_1 is parallel to \vec{v} and \vec{F}_2 is perpendicular to \vec{v} , determine the magnitude of \vec{F}_2 .(Hint: Consider the geometrical interpretation of the scalar product of two vectors).

Solution:

$$\vec{F} \cdot \vec{v} = (\vec{F}_{1} + \vec{F}_{2}) \cdot \vec{v} = \vec{F}_{1} \cdot \vec{v} + \vec{F}_{2} \cdot \vec{v}$$

$$= 0$$

$$\vec{F} \cdot \vec{v} = 3 - 1 = 2 = \vec{F}_{1} \cdot \vec{v} = \vec{F}_{1} \cdot v \cos 0$$

$$= 1 \text{ as } \vec{F}_{1} / \vec{v}$$

$$\Rightarrow \vec{F}_{1} = \cancel{I_{0}}$$

$$\Rightarrow \vec{F}_{1} = 2 \qquad \vec{F}_{1} = \vec{F}_{1} \cdot \vec{F}_{1} = \vec{F}_{1} \cdot \vec{v} = 2 \qquad \vec{F}_{1} / \vec{v} = 2 \qquad \vec{F}_{1} / \vec{v} = 2 \qquad \vec{F}_{1} = \vec{F}_{1} \cdot \vec{F}_{2} = \vec{F}_{1} \cdot \vec{F}_{2}$$