PHYS 101: General Physics 1

KOÇ UNIVERSITY

Spring Semester 2015

College of Arts and Sciences

Section

Quiz 2-1

February 2015

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name:

Student ID:

Signature:

As shown in figure 1, two cars **A** and **B** move along the x –axis. **A** is travelling with a constant acceleration 10 m/sec2 and its initial velocity is 20 m/sec. The second car **B** is travelling with a constant speed of 5 m/sec. Pls note that their initial positions are also different.

- 1- At what time(s) do A and B have the same position?
- 2- Plot a graph of position (X) versus time (t) for each car.

$$57^{2}-257-30=0$$

 $+^{3}-57-6=0$
 $(T-9(T+1)=0=) T=6s$

PHYS 101: General Physics 1

College of Arts and Sciences

Section

Quiz 2-2

February 2015

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name:

Student ID:

Signature:

As shown in figure 1, two cars $\bf A$ and $\bf B$ move along the x –axis. $\bf A$ is travelling with a constant acceleration 20 m/sec2 and its initial velocity is 20 m/sec. The second car $\bf B$ is travelling with a constant acceleration of 10 m/sec. Pls note that their initial positions are also different.

- 1- At what time(s) do A and B have the same position?
- 2- Plot a graph of position (X) versus time (t) for each car.

$$1 - x_{A} = x_{A_{0}} + \omega_{A}t + \frac{1}{2}\alpha_{A}t^{2} \qquad x_{B} = x_{B_{0}} + \frac{1}{2}\alpha_{B}t^{2}$$

$$at t = T = x_{A} = x_{B} \qquad x_{A_{0}} + \omega_{A}T + \frac{1}{2}\alpha_{A}T^{2} = x_{B_{0}} + \frac{1}{2}\alpha_{B}T^{2}$$

$$x_{A_{0}} + \omega_{A}T + \frac{1}{2}\alpha_{A}T^{2} = x_{B_{0}} + \frac{1}{2}\alpha_{B}T^{2}$$

$$x_{A_{0}} + \omega_{A}T + \frac{1}{2}\alpha_{A}T^{2} = x_{B_{0}} + \frac{1}{2}\alpha_{B}T^{2}$$

$$x_{A_{0}} + \omega_{A}T + \frac{1}{2}\alpha_{A}T^{2} = x_{B_{0}} + \frac{1}{2}\alpha_{B}T^{2}$$

$$x_{A_{0}} + \omega_{A}T + \frac{1}{2}\alpha_{A}T^{2} = x_{B_{0}} + \frac{1}{2}\alpha_{B}T^{2}$$

$$x_{A_{0}} + \omega_{A}T + \frac{1}{2}\alpha_{A}T^{2} = x_{B_{0}} + \frac{1}{2}\alpha_{B}T^{2}$$

$$x_{A_{0}} + \omega_{A}T^{2} = x_{B_{0}} + \frac{1}{2}\alpha_{B}T^{2}$$

PHYS 101: General Physics 1

KOÇ UNIVERSITY

Spring Semester 2015

College of Arts and Sciences

Section

Quiz 2-3

February 2015

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name:

Student ID:

Signature:

As shown in figure 1, two cars $\bf A$ and $\bf B$ move along the x –axis. $\bf A$ is travelling with a constant velocity of 5 m/sec2. The second car $\bf B$ is travelling with a constant acceleration of 10 m/sec2 and its initial velocity is 10 m/sec. Pls note that their initial positions are also different.

- 1- At what time(s) do A and B have the same position?
- 2- Plot a graph of position (X) versus time (t) for each car.

$$1 - X_{A} = X_{A} + V_{A} t$$

$$at t = T \Rightarrow X_{A} = X_{B}$$

$$x(m)$$

$$2 - 31 + X_{B}$$

$$2 + 5T$$

$$5 + X_{A} + V_{A} + V_{A}$$

$$x_{B} = x_{B} + y_{B}t + \frac{1}{2}a_{B}t^{2}$$

$$x_{A} + y_{A}T = x_{B} + y_{B}T + \frac{1}{2}a_{B}T^{2}$$

$$6 - 5T = 26 + 10T - 5T^{2}$$

$$-5T^{2} + 15T + 20 = 0$$

$$-7^{2} - 3T - 4 = 0 \quad (T - 4)(T + 1) = 0$$

$$T = 45$$