PHYS 101: General Physics 1

KOÇ UNIVERSITY

Spring Semester 2016

College of Sciences

Section 1

Quiz 12

May 6, 2016

Closed book. Duration: 10 minutes

Name:

Student ID:

Signature:

A satellite with mass m_s is in a circular orbit at a height $R_E/10$ above the Earth's surface. How much additional work should be done to make the satellite escape from the Earth? Express your answer in terms of G (gravitational constant), R_E (radius of the Earth), m_s (mass of the satellite), and M_E (mass of the Earth).

Circular arbit

$$\frac{\sum_{mechanical,L}}{2} = \frac{1}{2} m_s u^2 - \frac{U_e G m_s}{\left(\frac{IIR_E}{10}\right)} = -\frac{1}{2} \frac{U_E m_s G}{\left(\frac{IIR_E}{10}\right)}$$

Emechanical, 1 + W = 0) since potential is defined wrt. infinity and the speed is zero when the satellife reaches infinity

$$W = + \frac{1}{2} \frac{W_{\epsilon} m_{s} G}{\left(\frac{11R_{\epsilon}}{10}\right)}$$

PHYS 101: General Physics 1

KOÇ UNIVERSITY

Spring Semester 2016

College of Sciences

Section 2

Quiz 12

May 6, 2016

Closed book. Duration: 10 minutes

Name:

Student ID:

Signature:

A rocket is launched from the surface of the Earth with an initial speed v_{in} . Find an expression for the minimum value of v_{in} such that the rocket will completely escape from the Earth. Express your answer in terms of G (gravitational constant), R_E (radius of the Earth), and M_E (mass of the Earth).

Emcchanical =
$$0 = K + U$$

$$V = -\frac{C m_{recket} We}{Re} \quad (potential at the surface)$$

$$K = \frac{1}{2} m_{recket} U_{in}^{2}$$

$$\frac{1}{2} m_{rocket} U_{in}^{2} - \frac{C m_{rocker} U_{E}}{R_{E}} = 0$$

$$Q_{in} = \begin{cases} 2CUE \\ R_{E} \end{cases}$$

PHYS 101: General Physics 1

KOÇ UNIVERSITY

Spring Semester 2016

College of Sciences

Section 3

Quiz 12

May 6, 2016

Closed book. Duration: 10 minutes

Name:

Student ID:

Signature:

A satellite with mass m_s is initially stationary at the surface of the Earth. How much work should be done to place this satellite to a circular orbit at a height $R_E/10$ above the Earth's surface? Express your answer in terms of G (gravitational constant), R_E (radius of the Earth), m_s (mass of the satellite), and M_E (mass of the Earth).

Circular motion

$$\frac{m_s u_s^2}{\frac{11 Re}{10}} = \frac{m_s u_e u_e}{\left(\frac{11 Re}{10}\right)^2}$$

$$W = E_{total, orbit} - E_{before lounch} = \frac{GW_{E}m_{S}}{RE} \left(-\frac{10}{22} + 1 \right)$$