College of Arts and Sciences

Section

Quiz 10-2
May 2016

Closed book. No calculators are to be used for this quiz.
Quiz duration: 15 minutes

Name:
 Student ID:
 Signature:

A projectile of mass \mathbf{m} moves to the right with a speed of $\mathrm{V} \mathbf{0}$. The projectile collides to the end of a stationary rod of mass m elastically. The length of the rod is \mathbf{L}. The moment of inertia of the rod about the center of mass is ($\mathrm{mL}^{2} / \mathbf{1 2}$)
Calculate the angular speed of the rod ω and the center of the mass velocities of the rod and the projectile ($\mathbf{V} 1$ and $\mathbf{V} 2$) after the collision?

College of Arts and Sciences

Section
Quiz 10-2
May 2016

Closed book. No calculators are to be used for this quiz.
Quiz duration: $\mathbf{1 5}$ minutes
Name:
Student ID:
Signature:

A projectile of mass $\mathbf{2 m}$ moves to the right with a speed of V 0 . The projectile collides to the end of a stationary rod of mass m elastically. The length of the rod is \mathbf{L}. The moment of inertia of the rod about the center of mass is ($\mathrm{mL}^{2} / \mathbf{1 2}$)
Calculate the angular speed of the rod ω and the center of the mass velocities of the rod and the projectile ($\mathbf{V} 1$ and \mathbf{V}) after the collision?

Section

Quiz 10-3

Closed book. No calculators are to be used for this quiz.

Quiz duration: 15 minutes

Name:

Student ID:

Signature:

A projectile of mass m moves to the right with a speed of V0. The projectile collides to the end of a stationary rod of mass 3 m elastically. The length of the rod is \mathbf{L}. The moment of inertia of the rod about the center of mass is ($\mathrm{mL}^{2 / 12)}$

Calculate the angular speed of the rod ω and the center of the mass velocities of the rod and the projectile (V1 and V2) after the collision?

