Name, Surname:	Signature:
Exam Room:	Student ID Number:

PHYS 101 General Physics I - Midterm 1

16 March 2019 Saturday 10:00-12:00

Please read!

- Count to make sure that there are 5 pages in the question booklet
- Check your name and surname on front page, and student ID number on each page, and sign each page.
- This examination is conducted with closed books and notes.
- Put all your personal belongings underneath your seat and make sure that pages of books or notebooks are not open.
- Absolutely no talking or exchanging anything (like rulers, erasers) during the exam.
- You must show all your work to get credit; you will not be given any points unless you show the details of your work (this applies even if your final answer is correct!).
- Write neatly and clearly; unreadable answers will not be given any credit.
- If you need more writing space, use the backs of the question pages and put down the appropriate pointer marks.
- Make sure that you include units in your results.
- Make sure that you label the axis and have units in your plots.
- You are allowed to use calculators during this exam.
- Only the answers in the boxes will be graded and NO partial credit will be given. No points will be given to unjustified answers. Incomplete calculations will not be graded

1	2	3	4	TOTAL

Name:	Signature:
Department:	Number:

1) a) (10 Points) What is the angle between $\overrightarrow{\boldsymbol{A}}=-3 \hat{\boldsymbol{\imath}}+4 \hat{\boldsymbol{\jmath}}+2 \widehat{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{B}}=2 \hat{\boldsymbol{\imath}}-3 \hat{\boldsymbol{\jmath}}+5 \widehat{\boldsymbol{k}}$?

b) (10 Points) Consider the vectors $\overrightarrow{\boldsymbol{A}}=2 \hat{\boldsymbol{\imath}}+3 \hat{\boldsymbol{\jmath}}$ and $\overrightarrow{\boldsymbol{B}}=x \hat{\boldsymbol{\imath}}+2 \hat{\boldsymbol{\jmath}}$. What is x if $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$ are perpendicular to each other?

Name:	Signature:
Department:	Number:

2) (20 Points) A grasshopper leaps into the air from the edge of a vertical cliff, as shown in Figure below. Find (a) the initial speed of the grasshopper and (b) the height of the cliff. (Assume $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

Name:	Signature:
Department:	Number:

3) (20 Points) A small bead can slide without friction on a circular hoop that is in a vertical plane and has a radius of 0.1 m as shown in the Figure below. The hoop is in vertical equilibrium for when the angle β is equal to 45°. Find the linear speed (v) and angular speed (ω) of the bead. (Assume $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

Name:	Signature:
Department:	Number:

4) (20 Points) Two blocks connected by a light horizontal rope sit at rest on a horizontal, frictionless surface. Block A has mass $\mathbf{1 5} \mathbf{~ k g}$ and block \mathbf{B} has mass \mathbf{m}. A constant horizontal force $\mathbf{F}=\mathbf{6 0} \mathbf{N}$ is applied to block A. In the first $\mathbf{5} \mathbf{~ s e c}$ after the force is applied, block A moves $\mathbf{2 5} \mathbf{m}$ to the right.

a) While the blocks are moving, what is the tension \mathbf{T} in the robe that connects the two blocks?
$\mathrm{T}=$
b) What is the mass of block B

Name:	Signature:
Department:	Number:

5) (20 Points) Block B, with mass $\mathbf{5}$ kg rests on block \mathbf{A}, with $\mathbf{7} \mathrm{kg}$, which in turn is on a horizontal tabletop. There is no friction between block A and the tabletop, but the coefficient of static friction between blocks A and B is $\mu=0.6$. A light string attached to block A passes over a frictionless, massless pulley and block \mathbf{C} is suspended from the other end of the string. What is the largest mass that block \mathbf{C} can have so that \mathbf{A} and \mathbf{B} still slide together when the system is released from rest? ($g=10 \mathrm{~m} / \mathrm{s}^{\wedge} 2$)

