Name:	Signature:
Department:	Number:

2. (25 points) A ball is attached to a train moving at constant angular speed ω on a vertical circular track of radius **R** as shown in the figure. The position of the ball at **t=0** is given as **x(0)=R** and **y(0)=0**.

(a) Express $\mathbf{x}(\mathbf{t})$ and $\mathbf{y}(\mathbf{t})$ in terms of $\mathbf{R}, \boldsymbol{\omega}, \mathbf{t}$.

Constant angular velocity => $\theta(t) = \omega t$ x(t) = R cos(ωt) (2 pts) y(t) = R sin(ωt) (2 pts)

(b) Express v_x and v_y , the horizontal and vertical components of the ball's velocity, in terms of x and y.

 $\mathbf{v}_x = dx/dt = -\omega R \sin(\omega t) = -\omega y (3 \text{ pts})$ $\mathbf{v}_y = dy/dt = \omega R \cos(\omega t) = \omega x (3 \text{ pts})$

At a certain point (x_1,y_1) between $(\mathbf{R},\mathbf{0})$ and $(\mathbf{0},\mathbf{R})$, the ball is released. From this moment on, it performs a projectile motion which peaks at $\mathbf{x}=\mathbf{0}$ and falls back on the track at $(-x_1,y_1)$. The downwards gravitational acceleration is given by \mathbf{g} .

(c) Using (b), calculate the time of flight of the ball in terms of x_1 , y_1 , R, g, ω (you may not need to use all).

 $|\mathbf{v}_{\mathbf{y}}| = g(t_{\text{flight}}/2)$ (3 pts) => $t_{\text{flight}} = 2\omega x_1/g$ (2 pts)

Alternatively: $2x_1 = |v_x| t_{\text{flight}} = (\omega y_1) t_{\text{flight}} => t_{\text{flight}} = 2x_1/\omega y_1 (2 \text{ pts})$

(d) Find x_1 , y_1 in terms of **R**, **g**, ω . (Hint: Consider the distance traversed in the x-direction during the flight)

 $\begin{aligned} 2x_1 = |v_x| \ t_{flight} = (\omega y_1)(2\omega x_1/g) \quad (3 \ \text{pts}) & => \quad y_1 = g/\omega^2 \qquad (2 \ \text{pts}) \\ x_1 = sqrt[R^2 - (g/\omega^2)^2] \quad (2 \ \text{pts}) \end{aligned}$

Alternatively: $|\mathbf{v}_y| = g(t_{\text{flight}}/2) \implies \omega x_1 = gx_1/\omega y_1 \dots$

(e) What is the minimum angular speed for which the above scenario is possible?

 $y_1 = g/\omega^2 \le R \implies \omega \ge \text{sqrt}[g/R]$ (3 pts)