PHYS 102: General Physics 2

KOÇ UNIVERSITY

Spring Semestre 2010

College of Arts and Sciences

Section 1

Quiz 1

4 March 2010

Closed book. No calculators are to be used for this quiz. Ouiz duration: 10 minutes

Name:

Student ID:

Signature:

A cube has sides of length L. It is placed with one corner at the origin as shown below. The electric field is uniform and given by $\vec{E} = -B\hat{\imath} + C\hat{\jmath}$, where B, and C are positive constants. Find the total outward electric flux through the surface of the cube as a function of L, B, and C.

$$\begin{split}
\bar{\varphi} &= \bar{\mathcal{E}} \cdot \bar{A} \\
\bar{\mathcal{E}} &= -B^{1} + C^{\frac{1}{2}} \\
\bar{A} &= A^{\frac{1}{2}}
\end{split}$$

$$\begin{split}
\bar{\mathcal{A}} &= A^{\frac{1}{2}} \\
\bar{\mathcal{A}} &= -L^{\frac{1}{2}} \\
\bar{\mathcal{A}} &= (-B^{1} + C^{\frac{1}{2}}) \cdot (-L^{\frac{1}{2}}) = -CL^{\frac{1}{2}}
\end{split}$$

$$\begin{split}
\bar{\mathcal{A}} &= -L^{\frac{1}{2}} \\
\bar{\mathcal{A}}$$

PHYS 102: General Physics 2 KOÇ UNIVERSITY

Spring Semestre 2010

College of Arts and Sciences

Section 2

Quiz 1

4 March 2010

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A flat, square surface with sides of length L (shown below) is described by the equations x = L, $0 \le y \le L$, and $0 \le z \le L$. Find the electric flux through the square due to a positive point charge q located at the origin as a function of q and ε_0 . (Hint: Think of the square as part of a cube centered on the origin)

Achoe =
$$6(2L)^2 = 2LL^2$$
, Asquare = L^2 . \Rightarrow Asquare = $\frac{A \text{ cube}}{24}$

For Cube; $J_E = \oint \vec{E} d\vec{A} = E \cdot A \text{ cube} = \frac{q}{E_0} = \frac{q}{E_0}$

For square; $J_E = \vec{E} \cdot A \text{ square} = \frac{q}{E_0} \cdot \vec{L} = \frac{q}{2L E_0}$

PHYS 102: General Physics 2

KOÇ UNIVERSITY

Spring Semestre 2010

College of Arts and Sciences

Section 3

Quiz 1

4 March 2010

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A very long hollow cylinder with inner radius a and outer radius b has positive charge uniformly distributed throughout it, with charge per unit volume ρ . Derive the expression for the electric field inside the volume at a distance r from the axis of the cylinder (a < r < b).

$$\oint \vec{E} \cdot d\vec{A} = \frac{9 \text{ enc}}{\xi_0}$$

$$9 \text{ enc} = 9 \pi (r^2 - a^2) L$$

$$E 2 \pi r L = \frac{9 \pi (r^2 - a^2) L}{\xi_0}$$

$$E = \frac{9}{2\xi_0 r} (r^2 - a^2) , \vec{E} = \frac{9}{2\xi_0 r} (r^2 - a^2) \hat{r}$$

PHYS 102: General Physics 2 KOÇ UNIVERSITY

Spring Semestre 2010

College of Arts and Sciences

Section 4

Quiz 1

4 March 2010

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A small sphere with a mass m and carrying a cahrge q hangs from a thread near a very large, charged conducting sheet as shown below. The charge density on the sheet is $-\sigma$. Find the angle of the thread as a function of m, g, q, σ , and ε_0 .

$$\vec{r} = \vec{q}\vec{E}$$

Forces act on the sphere are bolonced; $9E = T.Sin\theta$ } ton $\theta = \frac{9E}{mg}$ $\Rightarrow \theta = arctan(\frac{9E}{mg})$ $Mg = T.Cos\theta$ } ton $\theta = \frac{9E}{mg}$ $\Rightarrow \theta = arctan(\frac{9E}{mg})$ Electric Held for a sheet of charge;

$$E = \frac{3}{2E_0} \Rightarrow \theta = \arctan\left(\frac{96}{2mpE_0}\right)$$

PHYS 102: General Physics 2 KOÇ UNIVERSITY

Spring Semestre 2010

College of Arts and Sciences

Section 5

Quiz 1

4 March 2010

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

An insulating spherical shell with inner radius a and outer radius b has positive charge uniformly distributed throughout it, with charge per unit volume ρ . Derive the expression for the electric field inside the volume at a distance r from the center of the sphere $(\alpha < r < b)$.

$$9 = 9 \frac{1}{3}\pi(3-3)$$

$$9 = 9 \frac{1}{3}\pi(3-3)$$

$$= 9 \frac{1}{3}\pi(3-3)$$