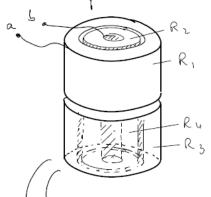

PHYS 102: General Physics KOÇ UNIVERSITY Spring Semester 2010 College of Arts and Sciences Quiz 5 April 1, 2010


Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name: Student ID: Signature:

Q. The inner and outer walls of the hollow cylindrical resistors below are coated with a metallic paint and between the walls is the same uniform material with a constant resistivity. The resistance measured between the terminals a and b in (1) is R, which is a function of L and the ratio of the inner and outer radii. Find the resistance measured between the terminals a and b in (2) by considering it as a collection of resistors connected in series and/or in parallel.

Decompose (2) into four resistors:

R₁ and R₃ are identical to (1)

R₁ with $\frac{r_{in}}{r_{out}} = \frac{r}{2r} = \frac{1}{2r}$ Re and Ru have the same leight -Ru L and $\frac{r_{in}}{r_{out}} = \frac{r/2}{r} = \frac{1}{2} - \frac{r}{2}$

Therefore, R1=R2=R3=R4=R.

 $R_{ab} = \left(R_1 // R_3\right) + \left(R_2 // R_4\right) = \frac{R}{2} + \frac{R}{2} \left[R\right]$

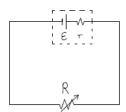
PHYS 102: General Physics KOÇ UNIVERSITY Spring Semester 2010 College of Arts and Sciences Quiz 5 April 1, 2010

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name: Student ID: Signature:

Q. The current flowing across the emf source in the resistor circuit in (a) is i. Calculate the currents in the circuit (b) in terms of i only. (*Hint:* You can consider each emf source separately first and then use the superposition principle to obtain the currents.)


PHYS 102: General Physics KOÇ UNIVERSITY Spring Semester 2010 College of Arts and Sciences Quiz 5 April 1, 2010

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name: Student ID: Signature:

Q. The emf source in the circuit below has an internal resistance r as shown and is connected to a variable "load" resistor R. Find the value of R for which the power dissipated on the load has the maximum possible value.

Saluhin:

$$i = \frac{\mathcal{E}}{r+R} = P$$
 Power on the load = $i^2R = \frac{\mathcal{E}R}{(r+R)^2}$

Make sure that R=r gives a maximum. not a minimum:

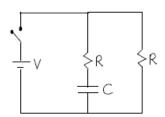
$$\frac{d^{2}}{dR^{2}} \left(\frac{\epsilon R}{(r+R)^{2}} \right) \begin{vmatrix} ? \\ < 0 \end{vmatrix}$$

$$= \frac{d}{dR} \left(\frac{r-R}{(r+R)^{3}} \right) \begin{vmatrix} = -\frac{1}{2R^{3}} < 0 \end{cases} V.$$

$$R_{eff}$$

PHYS 102: General Physics KOÇ UNIVERSITY Spring Semester 2010 College of Arts and Sciences Quiz 5 April 1, 2010

Closed book. No calculators are to be used for this quiz.


Quiz duration: 10 minutes

Name: Student ID: Signature:

Q. The capacitor below is initially uncharged. The switch is closed at time t = 0. It is opened at a later time t_1 , when the capacitor has a charge $Q_f/2$, half of its maximal value $Q_f = CV$. Find the charge on the capacitor at $t = 2t_1$ in terms of Q_f .

Hint:

Charging: $Q(t) = Q_f(1 - e^{-t/\tau})$ Discharging: $Q(t) = Q_i e^{-t/\tau}$

Solution:

The charging circuit is effectively $\sqrt{\frac{1}{2}} = 0$ $\tau_1 = RC$ $\Rightarrow (1 - e^{-t_1/\tau_1}) = \frac{1}{2} = 0$ $t_1 = \tau_1 \cdot \ln 2 = \ln 2 RC$ After the switch is spened, C discharges over a resistance 2R = 0 $\tau_2 = 2RC$ (duration of discharge) $\Rightarrow Q(2t_1) = \frac{Qt}{2} \cdot (1 - e^{-t_1/\tau_2})$ $\Rightarrow \frac{Qt}{2} \cdot (1 - e^{-\ln 2 RC}/2RC)$ $\Rightarrow \frac{Qt}{2} \cdot (1 - e^{-\ln 2 RC}/2RC)$