Spring Semester 2011

College of Sciences

Section 1

Quiz 1

17 February 2011

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Three charged particles are positioned on the x-axis. A positive charge (25 μ C) is placed at x=2 m and a negative charge (-49 μ C) is positioned at the origin (x=0). Where on the positive x-axis must a third charge be placed so that the resultant force on it is zero?

$$\frac{49\mu C}{0} + 25\mu C \qquad q$$

$$\frac{2}{2} \times (m) = 1$$

$$k \frac{|(-49\mu c).q|}{x^2} = k \frac{|(+25\mu c).q|}{(x-2)^2}$$

$$\rightarrow x = 7 \text{ m}$$

Spring Semester 2011

College of Sciences

Section 2

Quiz 1

17 February 2011

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Two identical 25×10^{-8} C charges are replaced on the y-axis at $y=\pm 4m$. What is the electric field vector on the x-axis at x=3m?

$$4m$$
 6
 $3m$
 4
 E_1
 E_2
 E_1
 E_2
 E_1
 E_2
 E_1

$$\overrightarrow{E} = \overrightarrow{E_1} + \overrightarrow{E_2}$$

$$Cos\theta = 0.6$$

$$sin\theta = 0.8$$

$$E_1 = k \cdot \frac{q_1}{r_1^2} = k \cdot \frac{25 \times 10^{-8}}{25} = 10^{-8} k \quad N/c$$

$$E_2 = k \cdot \frac{q_2}{r_2^2} = k \cdot \frac{25 \times 10^{-8}}{25} = 10^{-8} k \quad N/c$$

$$E_{1x} = E_{2x} = E_{1} \cdot \cos \theta = (10^{-8} \, \text{k})(0.6) = 6 \times 10^{-9} \, \text{k}$$
 N/c

$$\Rightarrow$$
 E = Ex = 1.2×10⁻⁸k (in the +x direction)
= 108 N/C

Spring Semester 2011

College of Sciences

Section 3

Quiz 1

17 February 2011

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Two point charges q_1 and q_2 are located at the corners of a square as in the figure. If the direction of the resultant electric field at point P is to the right, find the ratio (q_1/q_2) of the charges.

$$E_1 = k \frac{|q_1|}{a^2}$$
, $E_2 = k \frac{|q_2|}{2a^2} \rightarrow |E_{2y}| = \frac{E_2 \cdot \sin \theta}{2a^2}$
= $\frac{k |q_2|}{2a^2} \cdot \frac{1}{\sqrt{2}}$

$$E_{y} = 0 \rightarrow E_{1} = |E_{2y}|$$

$$\frac{L|q_{1}|}{a^{2}} = k \frac{|q_{2}|}{2\sqrt{2}a^{2}}$$

$$\Rightarrow \left|\frac{q_{1}|}{q_{2}}\right| = \frac{1}{2\sqrt{2}}$$

$$e_{1} \text{ and } q_{2} \text{ are of opposite sign} \rightarrow \frac{q_{1}}{q_{2}} = -\frac{1}{2\sqrt{2}}$$

Spring Semester 2011

College of Sciences

Section 4

Quiz 1

17 February 2011

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A charge (uniform linear density= $8x10^{-9}$) is distributed along the x-axis from x=0 to x=3 m. Determine the magnitude of the electric field at a point on the x-axis with x=4 m.

(charge over
$$dx$$
) = $dq = (8 \times 10^{-9}) dx$
(electric field at x=4m) = $dE = k \frac{dq}{(4-x)^2} = k \frac{(8 \times 10^{-9}) dx}{(4-x)^2}$
where x is the coordinate of dq
(Total field at x=4m) = $E = \int dE = \int_0^3 k \frac{(8 \times 10^{-9}) dx}{(4-x)^2}$
= $k(8 \times 10^{-9}) \left[\frac{1}{4-x} \right]_0^3$
= $k(8 \times 10^{-9}) \left[1 - \frac{1}{4} \right]$
= $(6 \times 10^{-9}) k N/c$
= 54 N/c

Spring Semester 2011

College of Sciences

Section 5

Quiz 1

17 February 2011

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A thin glass rod of length 15 cm is bent into a semicircle of radius r=5 cm. A charge $q=-7.5 \mu C$ is uniformly distributed along the upper half and a charge $q=+7.5 \mu C$ is uniformly distributed along the lower half as shown in the figure. Find the electric field vector at point 0.

field at the origin due to charge of distributed uniformly over a

$$(E_{+})_{y} = (E_{-})_{y} = (\frac{2}{\pi}) \frac{kq}{r^{2}}$$

$$(E) = (E) = (\frac{2}{\pi}) k \frac{(7.5 \times 10^{-6})}{(0.05)^2} = (\frac{k}{\pi}) (6 \times 10^{-3}) N_1$$