PHYS 102: General Physics KOÇ UNIVERSITY College of Arts and Sciences Quiz 2 Feb 24, 2011

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Spring Semester 2011

Solution

Q. The electric field on the faces of the cube with corners $(\pm 1, \pm 1, \pm 1)$ is found to be $\vec{E}(x, y, z) = Az\hat{k}$, where A is a constant with proper units. Calculate the total charge inside the cube by using Gauss's law.

Acea (Face 1) = Area (Face 2)

(È) Z = F9/21 7=1

Electric field in the & direction, therefore

we will be only concerned w/ the cube faces I and 2 in flux calculation. (Which lies on the x-y plane)

Ø €. dA = S €. dA + S €. dA

front foce bock foce

$$= (A\hat{\epsilon}).4.(\hat{\epsilon}) + (-A\hat{\epsilon}).4(-\hat{\epsilon})$$

= 8 A

 $\oint E_1 d\vec{A} = \frac{Q}{\epsilon_0}$

Q = 8A E0

PHYS 102: General Physics KOÇ UNIVERSITY Spring Semester 2011 College of Arts and Sciences Quiz 2 Feb 24, 2011

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Solution

Q. Consider an infinite cylinder with radius R and a uniform charge density ρ (C/m³). Find the electric field magnitude at a distance R/2 from the cylinder's central axis.

$$E \cdot A = \frac{Q}{\epsilon_0} , \qquad Q = \left[\Pi(\underline{\xi})^2 \cdot \ell \right] \cdot g$$

$$= \frac{\pi R^2 \ell g}{4}$$

$$E = \frac{\pi n^2 l s}{4 \epsilon_0}$$

$$E = \frac{\pi n^2 l s}{4 \epsilon_0} \cdot \frac{1}{4 \epsilon_0} = \frac{R s}{4 \epsilon_0}$$

PHYS 102: General Physics KOÇ UNIVERSITY Spring Semester 2011 College of Arts and Sciences Quiz 2 Feb 24, 2011

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Solution

Q. Find the electric field $\vec{E}(x,y,z)$ due to a straight wire with charge density λ if the line is parallel to the z-axis and passes through the point (1,0,0). Answer in terms of x,y,z,λ and constants.

Hint: For a line charge, Gauss's law gives $\vec{E}(\vec{r}) = (\lambda/2\pi\epsilon_0 r)\hat{r}$, where r is the distance from the line.

 $E(\frac{1}{2}) = \frac{\lambda}{\lambda} \hat{r}$

Hint provides useful info here:

$$E(z) = \frac{\lambda}{\lambda}$$
 ?

(1) The only thing we need to do is to write and ? interms of x,y, ?, ?.

Additionally two need to be careful using this transformation of the coordinate system, (1) since our line charge passes through x=1 (not from x=0)!

It is parallel to the & (q-corrinate), therefore Ewill have no & component!

keeping in mind x=1 coordinate

$$\frac{1}{\xi(x_{1}+1)^{2}+3} = \lambda \frac{(x_{1}+3)^{2}}{\sqrt{(x_{1}+1)^{2}+4^{2}}} \frac{1}{2\pi\epsilon_{0}\sqrt{(x_{1}+1)^{2}+4^{2}}}$$

$$= \frac{7(x-1)\hat{x} + y\hat{y}}{2\pi \epsilon_0 (x-1)^2 + 7^2}$$

PHYS 102: General Physics KOÇ UNIVERSITY Spring Semester 2011 College of Arts and Sciences Quiz 2 Feb 24, 2011

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name: Student ID:

Signature:

Solution

Q. A charge Q is located at the center of a sphere with radius R. Calculate the electric flux through the surface of the northern hemisphere $(x^2 + y^2 + z^2 = R^2, x, y, z > 0)$.

and perpendicular to the surface (or perollel to surface normal)

Electric field is some everywhere on the surface of the sphere with value

$$\bar{\Phi}_{\epsilon} = \frac{Q}{4\pi\epsilon_0 R^2} \cdot \frac{4\pi n^2}{2} = \left[\frac{Q}{2\epsilon_0} \right]$$

PHYS 102: General Physics KOÇ UNIVERSITY Spring Semester 2011 College of Arts and Sciences Quiz 2 Feb 24, 2011

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name: Stud

Student ID:

Signature:

Solution

Q. Calculate the magnitude of the electric flux through the unit disc on the xy-plane $(z=0,\ x^2+y^2\leq 1)$ due to the electric field $\vec{E}(x,y,z)=Ay^2\hat{i}+Bx^2\hat{j}+C(x^2+y^2)\hat{k}$. (A,B,C) are constant with proper units.)

Flux =
$$\oint_{E} = \oint_{E} \vec{e} \cdot \vec{d} \vec{A}$$

, where
$$[dA = rdrd\theta]$$

and $\vec{E}_{effective} = C(x^2+y^2)\hat{k}$