Spring Semester 2011

College of Sciences

Section 1

Quiz 3

03 March 2011

Closed book. No calculators are to be used for this quiz. Ouiz duration: 10 minutes

Name:

Student ID:

Signature:

A uniform electric field of magnitude 100 V/m is directed in the positive x-direction. A +2C charge moves from origin to the point (x, y) = (3 m, 4 m)

a) What was the change in the potential energy of this charge?

b) Through what potential difference did the charge move? ($k = 9 \times 10^9 \, N \cdot m^2 / C^2$)

Spring Semester 2011

College of Sciences

Section 2

Quiz 3

03 March 2011

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

(a) What is the net charge on a conducting sphere of radius R = 30 cm if the potential of the sphere is 300 000 V relative to 0 potential at infinity?

(b) What is the potential at the center of the sphere? $(k = 9 \times 10^9 N \cdot m^2 / C^2)$

a)
$$V_R - V_{\infty} = 3000000 = -\int_{0}^{R} d\vec{l} = -\int_{0}^{R} E dr = \frac{Q}{4\pi \epsilon_0 R} - \frac{Q}{4\pi \epsilon_0 R} = \frac{Q}{4\pi \epsilon_0 R}$$

since E is

in \hat{r} direction

b) Since the electric field inside a conducting sphere is zero therefore the potential inside and on the surface is the same.

Spring Semester 2011

College of Sciences

Section 3

Quiz 3

03 March 2011

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

An infinite nonconducting sheet has a surface charge density $\sigma = 4\epsilon 0$ on one side. How far apart are the equipotential surfaces whose potentials differ by 50 V? $(k = 9 \times 10^9 \, N \cdot m^2 / C^2)$

$$|\vec{E}| = \frac{\partial}{\partial E}| = \frac{\partial}{\partial$$

Since we just look for potential difference $=> y_b = +25 \text{ m}$

Spring Semester 2011

College of Sciences

Section 4

Quiz 3

03 March 2011

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

In an electric potential field given by V(x,y) = 50xy-10x, calculate the electrostatic force that would act on a charge of q=+2C at location (x, y) = (1 m, 2m). $(k = 9 \times 10^9 N \cdot m^2 / C^2)$

$$\vec{E} = -\vec{\nabla} V = -\left(\frac{\partial V}{\partial x}\hat{i} + \frac{\partial V}{\partial y}\hat{j}\right)$$

$$= -\left[\left(\frac{50y-10}{3x}\hat{i} + \frac{50}{3x}\hat{j}\right]\right]$$

$$\vec{F} = q \cdot \vec{E} = 2 \times \left[\left(\frac{10-50}{3} \times 2\right)\hat{i} - \frac{50}{3} \times 1\hat{j}\right]$$

$$= \left(-\frac{180}{3}\hat{i} - \frac{100}{3}\hat{j}\right) N$$

Spring Semester 2011

College of Sciences

Section 5

Quiz 3

03 March 2011

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Four equal negative charges q = -2 C, are positioned on the corners of a square with side a = 1 m. Find the potential at the center of the square, assuming that the potential is 0 at infinity. ($k = 9 \times 10^9 N \cdot m^2 / C^2$)

$$q = -2c$$

$$\frac{1}{\sqrt{2}}$$

$$\frac{\sqrt{2}}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$-2c$$

$$-2c$$

$$V_1 = \frac{9}{4\pi\epsilon_0 r} = -2 \times (9 \times 10^9) \times \frac{1}{\sqrt{2}} = -181/2 \times 10^9 V$$

Since we have the super position law weadd

the potential of the changes.