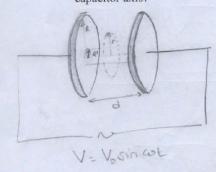
Spring Semester 2011

College of Sciences

Section 1

Quiz 10

05 April 2011


Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A parallel-plate capacitor has circular plates of radius R separated by distance d. A thin straight wire of length d, radius R lies along the axis of the capacitor and connects the plates. The capacitor plates are connected to an emf source with $V = V_0 \sin(\omega t)$. What is the magnetic field between the capacitor plates at a distance r < R from the capacitor axis?

$$i(t) = \frac{V(t)}{R} \quad \text{where } R \quad \text{is it resistance!}$$

$$R = \frac{Pd}{TR^{12}}$$

Spring Semester 2011

College of Sciences

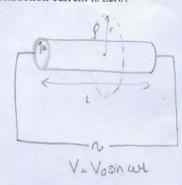
Section 2

Quiz 10

05 April 2011

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:


Student ID:

Signature:

A linear (ohmic) cylindrical resistor of radius a, length L, and resistivity ρ is connected to an alternating emf source with $V = V_0 \sin(\omega t)$.

a) Calculate the conduction current through the resistor.

b) What is the magnetic field outside the resistor at the instant when the conduction current is zero?

ic(t) = $\frac{V(t)}{R} = \frac{Ta^2 V_3}{\rho L}$ since $\frac{1}{\rho L}$ when

in to de to Tra? dE

from definition of radiativity we can find E field $p = \frac{E}{J}$ where J is ement density, $J = \frac{J}{A}$ THE E P J - P = & TOZ VO SINGET

E = Your cosut -> 10 = EoTTO? Vow cosut

BOTH BOTH B= No 02 Vo (+ since + to wesser) | B = 940 68 42 Vo w

Spring Semester 2011

College of Sciences

Section 3

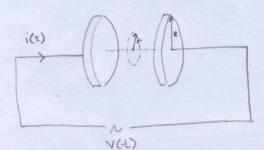
Quiz 10

05 April 2011

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:


Signature:

A parallel-plate capacitor with circular plates of radius *R* is being charged with a time dependent current *i*.

a) Calculate the maximum induced magnetic field B_{max} between the plates.

b) What is the magnetic field at radius r = R/2, inside the capacitor,

in terms of B_{max} ?

Bruss = C. A. 160 B(1=R/2) = C (14)

 $\oint \vec{B} \cdot d\vec{l} = \mu_1 (i(+i0)) = \mu_2 \in d\vec{l} = \mu_2 \in d\vec{l} = \mu_3 \in d\vec{l} = \mu_4 \in d\vec{l} = \mu_4 \in d\vec{l} = \mu_5 \in d\vec{l} = \mu_5 \in d\vec{l} = \mu_6 \in d\vec{$

Spring Semester 2011

College of Sciences

Section 4

Quiz 10

05 April 2011

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A sinusoidally varying voltage is applied across a capacitor with capacitance $C=1\mu F$. The frequency and the amplitude of the applied voltage are f=1kHz and $V_0=10V$, respectively. Calculate the displacement current in the capacitor.

PHYS 102: General Physics 2 KOÇ UNIVERSITY **Spring Semester 2011** College of Sciences Section 5 Quiz 10 05 April 2011 Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes Name: **Student ID:** Signature: A circular parallel-plate capacitor is connected to an alternating emf source with voltage $V = V_0 \sin(\omega t)$. The capacitor plates are separated by distance d. a) Calculate the magnetic field inside the capacitor. b) Calculate the electric field induced by the magnetic field determined in (a). 10 = 60 de = Co AVou coscut \$ B.de = No (je + 10) ence BORY - NSEONING W COUNT B(1,1) = 6/2, Now F cosut =) SE(r) d = -d (2) Stopo Volumy cosum dxdy) = EoNo Volumy 2 cosum dxdy) = EoNo Volumy 2 cosum dxdy) E(r) = Mo Eo Vo w2 T2 smut