Spring Semester 2011

College of Sciences

Section 4

Quiz 12

26 May 2011

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Solution

Student ID:

Signature:

A circuit is composed of a single loop with an alternating current source $V(t) = V_0 \cos(\omega t)$, an inductor L, a capacitor C, a resistor R, and an unkown circuit element. The resultant current is $I(t) = I_0 \cos(\omega t + \pi/4)$, and $R = \omega L = 1/4 \omega C$.

- (a) What is the unkown circuit element?
- (b) Completely determine the characteristic of the unknown circuit element in terms of V_0 , I_0 , ω , t, X, L and C. (all of these will not be necessary).

$$R = \omega L = \frac{1}{4\omega c}$$

$$X_{L} = R$$

$$X_{C} = 4R$$

since the argle is
$$45^{\circ} \Rightarrow |X_{c}-X_{c}+?|=R$$

we need to add inductor with $X_L = 2R$

L= 2R Vo To = Vo thus L= VI Vo

Spring Semester 2011

College of Sciences

Section 3

Quiz 12

26 May 2011

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name: Solution

Student ID:

Signature:

A circuit is composed of a single loop with an alternating current source $V(t) = V_0 \sin(\omega t)$, and an unknown element. If the resultant current is

 $I(t) = \frac{V_0}{R} \sin(\omega t - \pi/2)$, identify the unknown element and plot the current passing through this element together with the potential difference.

voltage leads current therefore it is inductor.

Spring Semester 2011

College of Sciences

Section 2

Quiz 12

26 May 2011

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Solution

Student ID:

Signature:

A circuit is composed of a single loop with an alternating current source $V(t) = V_0 \cos(\omega t)$, an inductor L and a resistor R. Derive the power P(t) obtained from the alternating current source as a function of (V_0, ω, t, L, R) .

Phasor diagram

$$=$$
) $\phi = arctan\left(\frac{wL}{R}\right)$

$$T = \frac{V_0}{Z} = \frac{V_0}{(R^2 + \omega^2 L^2)^{1/2}}$$

$$P(+) = I(+) V(+) = \frac{V_0}{\sqrt{n^2 + u^2 l^2}} cos[u+-orcton(\frac{ul}{n})]$$
, [vo. cos(u+)]

Spring Semester 2011

College of Sciences

Section 1

Quiz 12

26 May 2011

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Solution

Student ID:

Signature:

A circuit is composed of a single loop with an alternating current source $V(t) = V_0 \cos(\omega t)$, a capacitor C and a resistor R. Derive the current I(t) as a function of (V_0, ω, t, C, R) .

Phasor diagram

$$\Rightarrow$$
 $\phi = \arctan\left(\frac{xc}{R}\right) = \arctan\left(\frac{1}{wcn}\right)$

Spring Semester 2011

College of Sciences

Section 5

Quiz 12

26 May 2011

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Solution

Student ID:

Signature:

A circuit is composed of a single loop with an alternating current source $V(t) = V_0 \cos(\omega t)$, two unknown circuit elements and a resistor R. The current is $I(t) = I_0 \cos(\omega t - \pi/3)$.

- (a) What are the circuit elements in the boxes with the question marks?
- (b) Determine I_0 in terms of (V_0, R, ω, t) (all of these may not be necessary).

$$X_c - X_c > 0$$

It can be 2 inductor or LC with XL>XC

I choose Land Las unknown elements => their total reactance is X2

$$\frac{7}{2}$$
. $\sin \frac{\pi}{3} = X_L$

$$2.\cos\frac{\pi}{3} = R$$

$$\overline{I}_0 = \frac{V_0}{2} = \frac{V_0}{\sqrt{R^2 + W^2L^2}} \quad \text{and} \quad L = R + \ln \frac{T}{3},$$