PHYS 102: General Physics 2

Section 1

College of Sciences
Quiz 5

Spring Semester 2011

24 March 2011

Closed book. No calculators are to be used for this quiz.
Quiz duration: $\mathbf{1 0}$ minutes
Name:
Student ID:
Signature:
Consider the circuit shown in the figure.

a) Calculate the current in 5Ω resistor.
b) What power is dissipated by the entire circuit?

b)

$$
\begin{aligned}
P & =\frac{V^{2}}{R} \\
& =\frac{(28)^{2}}{14} \\
P & =56 \omega
\end{aligned}
$$

PHYS 102: General Physics 2 KOÇ UNIVERSITY
College of Sciences
Section 2

Quiz 5
24 March 2011

Closed book. No calculators are to be used for this quiz.
Quiz duration: $\mathbf{1 0}$ minutes
Name:
Student ID:
Signature:
Three batteries of emf $\varepsilon_{1}=8 \mathrm{~V}, \varepsilon_{2}=12 \mathrm{~V}$, and $\varepsilon_{3}=2 \mathrm{~V}$ are connected with five resistors in a circuit as shown in the figure.

a) Find the current I flowing in the circuit.
b) Find the potential difference between points A and $B, V_{B}-V_{A}$.
a) Start from point A and go around the circuit counter clock wise.

$$
\begin{aligned}
& V_{A}+\varepsilon_{2}-I \times 3-\varepsilon_{3}-I \times 1-I \times 2+\varepsilon_{1}-I \times 1-I \times 2=V_{A} \\
& \Rightarrow 12-3 I-2-I-2 I+8-I-2 I=0 \\
& \Rightarrow 18-9 I=0 \\
& \Rightarrow I=\frac{18}{9}=2 \mathrm{I}>0 \Rightarrow \text { The direction of I has chosen correctly. }
\end{aligned}
$$

b)

$$
\begin{aligned}
& v_{A}+\varepsilon_{2}-3 I-\varepsilon_{3}=v_{B} \\
\Rightarrow & v_{B}-v_{A}=12-3 \times 2-2 \\
\Rightarrow & v_{B}-v_{A}=4 \mathrm{~V}
\end{aligned}
$$

Section 3
Quiz 5
24 March 2011

Closed book. No calculators are to be used for this quiz.
Quiz duration: $\mathbf{1 0}$ minutes
Name:
Student ID:
Signature:
A capacitor C that is initially uncharged is connected in series with a resistor R and emf source $\varepsilon=120 \mathrm{~V}$. Just after the circuit is completed, the current through the resistor is $6 \times 10^{-5} \mathrm{~A}$. The time constant for the circuit is 10 s . Find the resistance of the resistor and the capacitance of the capacitor.

$$
\begin{aligned}
& I_{0}=6 \times 10^{-5} \mathrm{~A} \\
& t=0 \text { we can ignore capacitor: } \\
& R=\frac{\varepsilon}{I_{0}}=\frac{120}{6 \times 10^{-5}} \\
& \Rightarrow R=2 \times 10^{6} \Omega \\
& \tau=10 \mathrm{~S}=\frac{R}{}=\frac{R}{2}=\frac{10}{2 \times 10^{6}} \\
& \tau \Rightarrow C=5 \times 10^{-6} \mathrm{~F}=5 \mathrm{~F}
\end{aligned}
$$

PHYS 102: General Physics 2 KOÇ UNIVERSITY
College of Sciences
Section 4
Quiz 5

24 March 2011
Closed book. No calculators are to be used for this quiz.
Quiz duration: 10 minutes
Name:
Student ID:
Signature:
In the circuit shown in the figure, the capacitor is originally uncharged with switch open. At $\mathrm{t}=0$ the switch is closed.

a) What is the current supplied by the emf just after the switch is closed?
b) What is the current long time after the switch is closed?
a) At $t=0$ we can ignore capacitor and the circuit is like below:

$$
\begin{aligned}
R_{e q} & =\frac{R_{1} R_{2}}{R_{1}+R_{2}} \\
I & =\frac{\varepsilon}{R_{e q}}=\frac{R_{1}+R_{2}}{R_{1} R_{2}} \varepsilon
\end{aligned}
$$

b) As $t \rightarrow \infty$ the capacitor becomes fully charged and $I_{1}=0$, In this Case the circuit becomes:

$$
I=\frac{\varepsilon}{R_{2}}
$$

PHYS 102: General Physics 2 KOÇ UNIVERSITY
College of Sciences
Section 5
Quiz 5
24 March 2011

Closed book. No calculators are to be used for this quiz.
Quiz duration: 10 minutes
Name:
Student ID:
Signature:
In the circuit shown in the figure, if $\mathrm{R}=50 \Omega$ and $\mathrm{I}=20 \mathrm{~mA}$, determine ε.

Potential difference across resistor $6 R$ is:

$$
\begin{aligned}
& V_{A B}=I(6 R)=20 \times 10^{-3} \times 6 \times 50 \\
& \Rightarrow V_{A B}=6 \mathrm{~V} \\
& \Rightarrow I_{1}=\frac{V_{A B}}{2 R}=\frac{6}{2 \times 50}=0.06 \mathrm{~A} \Rightarrow I_{1}=60 \mathrm{~mA} \\
& \Rightarrow I_{\text {total }}=I+I_{1}=80 \mathrm{~mA} \\
& R_{e q}=\frac{(6 R)(2 R)}{6 R+2 R}+3 R=\frac{12}{8} R+3 R=\frac{3}{2} R+3 R=4.5 R=4.5 \times 50 \\
& \Rightarrow R_{\text {eq }}=225=\Omega \\
& \\
& \Rightarrow I_{\text {total }} \cdot R_{\text {eq }}=80 \times 10^{-3} \times 225=18 \mathrm{~V} \Rightarrow \varepsilon=18 \mathrm{~V}
\end{aligned}
$$

