PHYS 102: General Physics 2

KOÇ UNIVERSITY

Spring Semestre 2012

College of Arts and Sciences

Section 3

Ouiz 9

19 April 2012

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

Two infinitely long, parallel wires are lying on the ground a distance a apart as shown in the figure. A third wire, of length L and mass m, carries a current of I_1 and is levitated above the first two wires, at a horizontal poisition midway between them. The infinitely long wires carry equal currents I_2 in the same direction, but in the direction opposite that in the levitated wire. What current must the infintely long wires carry so that the three wires form an equilateral triangle?

$$F_{y} = 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 / \pi a} = 0$$

$$= 0 = -mg + 2. \frac{M_0 141_2 L \sqrt{3}}{2 /$$