Section 1
Linear charge elasticity, $\lambda=\frac{Q}{\frac{2 \pi R}{4}}=\frac{2 Q}{\pi R}$

Infinitesimal charge, $d Q=\lambda d S, d S=r d \Theta$
field due to $d Q: d E=\frac{\lambda}{4 \pi \epsilon_{0}} \frac{d \Theta}{r^{2}}$

Components of the field
$d E_{x}=d E \cos (\Theta) \rightarrow E_{x}=\int d E_{x}$
$d E_{y}=d E \sin (\Theta) \rightarrow E_{y}=\int d E_{y}$
The electric field at P :

$$
\begin{aligned}
& d E_{x}=\frac{1}{2 \pi^{2} \epsilon_{0}} \frac{Q}{r^{2}} \cos \Theta d \Theta \\
& E_{x}=\int d E_{x} \\
&=\frac{1}{2 \pi^{2} \epsilon_{0}} \frac{Q}{R^{2}} \int_{0}^{\pi / 2} \cos \Theta d \Theta \\
&=\frac{1}{2 \pi^{2} \epsilon_{0}} \frac{Q}{R^{2}} \\
& E_{y}=\int d E_{y} \\
&=\frac{1}{2 \pi^{2} \epsilon_{0}} \frac{Q}{R^{2}} \int_{0}^{\pi / 2} \sin \Theta d \Theta \\
&=\frac{1}{2 \pi^{2} \epsilon_{0}} \frac{Q}{R^{2}}
\end{aligned}
$$

Section 2
Linear charge elasticity, $\lambda=\frac{Q}{\frac{2 \pi R}{3}}=\frac{3 Q}{2 \pi R}$

Infinitesimal charge, $d Q=\lambda d S, d S=R d \Theta$
field due to $d Q: d E=\frac{\lambda}{4 \pi \epsilon_{0}} \frac{d \Theta}{R^{2}}$

Components of the field

$$
\begin{gathered}
d E_{x}=d E \cos (\Theta) \\
=\frac{-3}{8 \pi^{2} \epsilon_{0}} \frac{Q}{R^{2}} \cos \Theta d \Theta \\
E_{x}=\int d E_{x}=\frac{-3}{8 \pi^{2} \epsilon_{0}} \frac{Q}{R^{2}} \int_{-\pi / 3}^{\pi / 3} \cos \Theta d \Theta=\left.\sin \Theta\right|_{-\pi / 3} ^{\pi / 3} \\
E_{x}=\frac{3 \sqrt{3}}{8 \pi^{2} \epsilon_{0}} \frac{Q}{R^{2}} \hat{i} \\
d E_{y}=d E \sin \Theta \rightarrow E_{y}=\int d E_{y}=0
\end{gathered}
$$

all vertical components will cancel out due to the symmetry of the arc

Section 3

Linear charge elasticity, $\lambda=\frac{Q}{2 \pi R / 4}=\frac{2 Q}{\pi R}$

Infinitesimal charge, $d Q=\lambda d S, d S=r d \Theta$
field due to $d Q: d E=\frac{\lambda}{4 \pi \epsilon_{0}} \frac{d \Theta}{r^{2}}$
Let $d E_{+}$be the field due to $d Q_{+}$and let $d E_{-}$, be the field due to $d Q_{-}$then field at point P is superposition of these two $d E_{+}+d E_{-}$

Due to symmetry of the problem, horizontal components cancel out. So,

$$
\begin{gathered}
E_{x}=0 \\
d E_{y}=d E_{+, y}+d E_{-, y}=2 d E_{+, y} \\
=2 \frac{1}{4 \pi \epsilon_{0}} \frac{d Q_{+}}{r^{2}} \cos \Theta \\
E_{y}=\int d E_{y}=\frac{1}{\pi \epsilon_{0}} \frac{Q}{r^{2}}\left(\left.\sin \Theta\right|_{0} ^{\pi / 2}\right) \hat{j} \\
E_{y}=-\frac{1}{\pi^{2} \epsilon_{0}} \frac{Q}{r^{2}}
\end{gathered}
$$

Section 4
Linear charge elasticity, $\lambda=\frac{Q}{\pi r}$

Infinitesimal charge, $d Q=\lambda d S, d S=r d \Theta$
field due to $d Q: d E=\frac{\lambda}{4 \pi \epsilon_{0}} \frac{d \Theta}{r}$

Components of the field

$$
\begin{gathered}
d E_{x}=d E \sin (\Theta) \\
=\frac{1}{4 \pi^{2} \epsilon_{0}} \frac{Q}{r^{2}} \sin \Theta d \Theta \\
E_{x}=\int_{0}^{p i} d E_{x}=-\left.\frac{1}{4 \pi^{2} \epsilon_{0}} \frac{Q}{r^{2}} \cos \Theta\right|_{0} ^{p i} \\
E_{x}=\frac{1}{2 \pi^{2} \epsilon_{0}} \frac{Q}{r^{2}} \\
d E_{y}=d E \sin \Theta \rightarrow E_{y}=\int d E_{y}=0
\end{gathered}
$$

all vertical components will cancel out due to the symmetry of the arc

Section 5

$$
E_{X}=\frac{1}{2 \pi^{2}}
$$

Linear charge elasticity, $\lambda=\frac{Q}{\pi r}$

Infinitesimal charge, $d Q=\lambda d S, d S=r d \Theta$
field due to $d Q: d E=\frac{\lambda}{4 \pi \epsilon_{0}} \frac{d \Theta}{r}$

Components of the field

$$
\begin{aligned}
d E_{x} & =d E \cos (\Theta) \\
& =\frac{1}{2 \pi^{2} \epsilon_{0}} \frac{Q}{R^{2}} \cos \Theta d \theta
\end{aligned}
$$

$d E_{y}=d E \sin (\Theta) \rightarrow E_{y}=\int d E_{y}=0$ The y component of the electric field is zero due to the symmetry of the problem

The electric field at P :

$$
\begin{aligned}
E & =\int_{0}^{\pi}\left[\frac{1}{4 \pi^{2} \epsilon_{0}} \frac{Q}{r^{2}} \sin \Theta d \Theta\right] \hat{i} \\
& =-\left[\frac{1}{4 \pi^{2} \epsilon_{0}} \frac{Q}{r^{2}} \cos \Theta\right]_{0}^{\pi} \hat{i} \\
& =\frac{1}{2 \pi^{2} \epsilon_{0}} \frac{Q}{r^{2}} \hat{i}
\end{aligned}
$$

