

$$
\begin{aligned}
\Phi_{\text {Total }} & =\oint \vec{E} \cdot d \vec{a}=\frac{Q_{e n c}}{2 \epsilon_{0}} \\
\Phi_{\text {Total }} & =\Phi_{u p}+\Phi_{b o t}+\Phi_{\text {side }}=0+0+E 2 \pi r h \Rightarrow \Phi_{\text {Total }}=E 2 \pi r h \\
Q_{\text {enclosed }} & =\rho V_{\text {enc }}
\end{aligned}
$$

$V_{\text {enc }}$ (Volume inside the Gaussian surface -Volume of cavity of radiusa)

$$
\begin{aligned}
V_{e n c} & =\pi r^{2} h-\pi a^{2} h=\pi h\left(r^{2}-a^{2}\right) \\
Q_{e n c} & =\rho \pi h\left(r^{2}-a^{2}\right) \\
E 2 \pi r h & =\frac{\rho \pi h\left(r^{2}-a^{2}\right)}{\epsilon_{0}}(\text { Gauss'law }) \\
\vec{E} & =\frac{\rho\left(r^{2}-a^{2}\right)}{\epsilon_{0}} \hat{r}
\end{aligned}
$$

$$
\begin{aligned}
\Phi_{\text {total }} & =\Phi_{\text {up }}+\Phi_{\text {bottom }}+\Phi_{\text {front }}+\Phi_{\text {back }}+\Phi_{\text {left }}+\Phi_{\text {right }} \\
\Phi_{\text {up }} & =E A \cos (\theta)=E A \cos (90)=0 \\
\Phi_{\text {bottom }} & =E A \cos (\theta)=E A \cos (90)=0 \\
\Phi_{\text {front }} & =E A \cos (\theta)=E A \cos (90)=0 \\
\Phi_{\text {back }} & =E A \cos (\theta)=E A \cos (90)=0 \\
\Phi_{\text {right }} & =E L A \cos (\theta)=E L A \cos (0)=E L A \\
\Phi_{\text {left }} & =E \times 0 \times A \cos (\pi)=0 \\
\Phi_{\text {total }} & =E L A
\end{aligned}
$$

Gauss's law

$$
\begin{aligned}
\Phi_{\text {Total }} & =\oint \vec{E} \cdot \overrightarrow{d A}=\frac{Q_{e n c}}{\epsilon_{0}} \\
\Phi_{\text {Total }} & =E 4 \pi r^{2} \\
Q_{e n c} & =\rho V_{e n c} \\
V_{e n c} & =4 / 3 \pi r^{3}-4 / 3 \pi a^{3} \\
Q_{e n c} & =4 / 3 \pi \rho\left(r^{3}-a^{3}\right)
\end{aligned}
$$

Gauss's law

$$
\begin{aligned}
E 4 \pi r^{2} & =\frac{4 / 3 \pi \rho\left(r^{3}-a^{3}\right)}{\epsilon_{0}} \\
\vec{E} & =\frac{\rho\left(r^{3}-a^{3}\right)}{3 \epsilon_{0} r^{2}} \hat{r}
\end{aligned}
$$

Gauss's law

$$
\begin{aligned}
\Phi_{\text {Total }} & =\oint \vec{E} \cdot \overrightarrow{d A}=\frac{Q_{\text {enc }}}{\epsilon_{0}} \\
\Phi_{\text {Total }} & =\Phi_{\text {left }}+\Phi_{\text {right }}+\Phi_{\text {inside }} \\
\Phi_{\text {Total }} & =E \pi r^{2}+E \pi r^{2}+0 \\
& =2 E \pi r^{2} \\
Q_{\text {enc }} & =\sigma \pi r^{2} \\
2 E \pi r^{2} & =\frac{\sigma \pi r^{2}}{\epsilon_{0}} \\
\vec{E} & = \pm \frac{\sigma}{2 \epsilon_{0}} \hat{y}
\end{aligned}
$$

$$
\begin{aligned}
\vec{F} & =\vec{E} q=-\frac{\sigma}{\lambda \epsilon_{0}} q \hat{y} \\
\Sigma f_{x} & =0 \\
\Sigma f_{y} & =0 \\
f & =\frac{\sigma}{\lambda \epsilon_{0}} q=T \sin (\Theta) \\
m g & =T \cos (\Theta) \\
\tan (\Theta) & =\frac{\sigma q}{2 \epsilon_{0} m g}
\end{aligned}
$$

Gauss's law Consider the cube itself as a Gaussian surface.
Gauss's law

$$
\Phi_{\text {Total }}=\oint \vec{E} \cdot \overrightarrow{d A}=\frac{Q_{e n c}}{\epsilon_{0}}
$$

The cube consists of $24(L \times L)$-square, since the charged particle is at the center, every little square has the same flux, because their distance from the particle are the same

$$
\Phi_{\text {square }}=\frac{q}{24 \epsilon_{0}}
$$

