PHYS 102: General Physics 2

KOÇ UNIVERSITY

Spring Semestre 2012

College of Arts and Sciences

Section 1

Quiz 7

29 March 2012

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

A particle with a charge of $-1.24 \times 10^{-8} C$ is moving with instantaneous velocity $\vec{v} = (4.19 \times 10^4 \, m/s)\hat{i} + (-3.85 \times 10^4 \, m/s)\hat{j}$. What is the force exerted on this particle by a magnetic field

a)
$$\vec{B} = (1.40T)\hat{i}$$
 and

b)
$$\vec{B} = (1.40T)\hat{k}$$
?

Magnetic Force on a Moving Charge:

a)
$$\vec{+} = (4.24 \times 10^{-6} \text{ C}) \left[4.49 \times 10^{4} \text{m/s} \hat{1} - 3.85 \times 10^{4} \text{m/s} \hat{j} \right] \times (4.40 \text{ T} \hat{1})$$

since $\hat{1} \times \hat{1} = 0 + -\hat{j} \times \hat{1} = \hat{k}$

PHYS 102: General Physics 2

KOÇ UNIVERSITY

Spring Semestre 2012

College of Arts and Sciences

Section 2

Quiz 7

29 March 2012

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

When a particle of charge q>0 moves with a velocity of \vec{v}_1 at 45° from the x axis in the xy-plane, a uniform magnetic field exerts a force \vec{F}_1 along the -z-axis as shown in the figure. When the same particle moves with a velocity \vec{v}_2 with the same magnitude as \vec{v}_1 but along the +z-axis, a force \vec{F}_2 of magnitude F_2 is exerted along the +x-axis.

- a) What are the magnitude (in terms of q, v, and F_2) and direction of the magnetic field?
- b) What is the magnitude of \vec{F}_1 in terms of F_2 ?

let $|\vec{a}_1| = \omega$, so $\vec{v}_1 = V\cos(45^\circ)^\circ + V\sin(45^\circ)^\circ = V_1 = V_1 = V_2 = V_2 = V_1 = V_2 =$

When the perticle moves with $\frac{E_2}{E_2} = 0 \text{ k}$ $\frac{E_2}{E_2} = 0 \text{ k}$ $= q 0 \text{ k} \times (B_X \uparrow + B_J f)$ $= q 0 \text{ k} \times (B_X f -$

with Bx = 0 $|\vec{F_1}| = 490 \frac{\sqrt{2}}{2} By$ $|\vec{F_2}| = 90 By$ $|\vec{F_2}| = \frac{\sqrt{2}}{2} |\vec{F_2}| = \frac{\sqrt{2}}{2}$

|F1 = 52 |F2 |

PHYS 102: General Physics 2 KOÇ UNIVERSITY

Spring Semestre 2012

College of Arts and Sciences

Section 3

Quiz 7

29 March 2012

Closed book. No calculators are to be used for this quiz. Ouiz duration: 15 minutes

Name:

Student ID:

Signature:

A particle with charge q is moving with speed v in the -y-direction. It is moving in a uniform magnetic field $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$.

- a) What are the components of the force \vec{F} exerted on the particle by the magnetic field?
- b) If q>0, what must the signs of the components of \vec{B} if the components of \vec{F} are all nonnegative?
- c) If q < 0, and $B_x = B_y = B_z > 0$, find the direction of \vec{F} and find the magnitude of \vec{F} in terms of |q|, v, B_x

oi)
$$\vec{F} = q \cdot \vec{\alpha} \times \vec{B} = -q \cdot \vec{\alpha} \times [B \times \hat{i} + B \cdot \hat{j} +$$

PHYS 102: General Physics 2

KOÇ UNIVERSITY

Spring Semestre 2012

College of Arts and Sciences

Section 4

Quiz 7

29 March 2012

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

An open plastic bottle with an opening diameter of 2.5 cm is placed on a table. A uniform 1.75 T magnetic field directed upward parallel to vertical encompasses the bottle. What is the total magnetic flux through the plastic of the bottle.

dioneter,
$$R = 2.5 \times 10^{-2} \text{ m}$$

radius, $\Gamma = \frac{R}{2} = 1.25 \times 10^{-2} \text{ m}$

Gauss Law for Magnetic fields

$$\oint \vec{B} \cdot d\vec{A} = 0$$

$$\oint \vec{B} \cdot d\vec{A} + \int \vec{B} \cdot d\vec{A} = 0$$

$$\oint \vec{S} \cdot d\vec{A} = -\int \vec{S} \cdot d\vec{A} = 0$$

$$= -B \cdot d\vec{A} = \frac{1.75 \, \text{T} \times \text{TI} \left(1.25 \times 10^{-2} \, \text{m}\right)^2}{1.25 \times 10^{-2} \, \text{m}}$$

The total surface, S= S,+S

S1: opening authors S2: plastic surface.

College of Arts and Sciences

Section 5

Quiz 7

29 March 2012

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

A particle with charge q and initial velocity $\vec{v}_0 = v_{x0}\hat{\imath} + v_{y0}\hat{\jmath}$ enters a region of uniform electric and magnetic fields. The magnetic field in the region is $\vec{B} = B_x\hat{\imath} + B_z\hat{k}$. Calculate the magnitude and direction of the electric field in the region if the particle is to pass through undeflected.

torce due 1 to electric field,

If the particle posses through the region undeflected the net force on the sporticle is zero!

((Ex1+Eyj+Ezi) = -9(-4yoBz1+0xoBzj+Bx4yok) => Ex =-4yoBz, Ey=4xoBz, Ez=Bx4yo

This,

É = -0yB21+UxB2j+Bxuyok