KOÇ UNIVERSITY

Spring Semestre 2012

College of Arts and Sciences

Section 1

Quiz 9

19 April 2012

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

Calculate the magnetic field at point P created by the current-carrying wire segment shown in the figure. The wire consists of two straight portions and a circular arc of radius a, which subtends and angle θ .

Note that two straight segments will not produce any magnetic field, since their current moves toward point P. Using Biot savar we have:

$$dB = \frac{Moldl}{4\pi a^2}$$
) $dl = ad\theta$

$$dB = \frac{Moldl}{4\pi a^2} = \frac{Moldd}{4\pi a^2} = \frac{Moldd}{4\pi a}$$

KOÇ UNIVERSITY

Spring Semestre 2012

College of Arts and Sciences

Section 5

Quiz 9

19 April 2012

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

Four wires each carrying a current of magnitude I are shown in the figure. The wires are located at the four corners of a square with side a. Two of the wires are carrying a current into the page, and the other two are carrying current out of the page. Calculate the y-component of the magnetic field at the center of the square.

Let's first draw the four forces and their y com-

ponen Es:

$$B_{y} = B_{y} + B_{y} + B_{y} + B_{y} = 4B_{y} = 4B_{1} \cos 45 = 4 \cdot \frac{M_{0} \cdot 1}{2\pi d} \cdot \frac{12}{2} = \frac{2\sqrt{12} M_{0} \cdot 1}{2\pi d}$$

$$J = \sqrt{\left(\frac{2}{2}\right)^{2} + \left(\frac{2}{2}\right)^{2}} = \sqrt{2}\left(\frac{2}{2}\right) = \frac{2}{\sqrt{2}}$$

$$B_{y} = \sqrt{\frac{2M_{0} \cdot 1}{\pi a}} = \frac{2M_{0} \cdot 1}{\pi a} = \frac{B_{y}}{\pi a}$$

KOÇ UNIVERSITY

Spring Semestre 2012

College of Arts and Sciences

Section 4

Quiz 9

19 April 2012

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

A long straight wire of radius R carries a steady current I that is uniformly distributed through the circular cross section of the wire. Calculate the magnetic field a distance r from the center of the wire in the regions $r \ge R$ and r < R.

Since we have cylindrical symmetry we will use the Ampere's law:

i) rak

, Ampere 100p

We choose circular Amperian loop passing through arbitrary point at distance r from the center:

$$\begin{cases}
\hat{B} \cdot dl = Molenc \\
lenc = I = D & B \neq dl = Molenc = D \\
= D & B \cdot 2\pi r = Mol = D & B = \frac{Mol}{2\pi r}
\end{cases}$$

ii) r<R

Again we choose Ampere loop at distance r: & B. de = Molenc lenc = JTr2 where j is current per cross-section (area). $J = J\pi R^2 = 7 \quad J = \frac{I}{\pi R^2}$ lenc = I - Xr2 => lenc = Ir2

$$\frac{\sqrt{3}}{3} \cdot \sqrt{3} = \frac{M_0 \text{Tenc}}{B} = \frac{M_0 \text{Tr}}{2\pi R^2}$$

$$= > \frac{M_0 \text{Tr}}{B} = \frac{M_0 \text{Tr}}{2\pi R^2}$$

KOÇ UNIVERSITY

Spring Semestre 2012

College of Arts and Sciences

Section 2

Quiz 9

19 April 2012

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

Consider a circular wire loop of radius R located in the yz plane and carrying a steady current I as shown in the figure. Calculate the magnetic field at an axial point P a distance a from the center of the loop.

Due to the symmetry total field will be in the x direction. Thus it is enough to integrate dBx. We will use the Biot-(2112-12). dBx = dB:cost = Molde. RdD; dl=RdD From Prtagora's theorem we have: r= R2 + 22 $cB_{\chi} = \int dB_{\chi} = \int \frac{M_0 I}{4\pi} \frac{R^2}{(R^2 + a^2)^{3/2}} d\theta = \frac{M_0 I}{4\pi} \frac{R^2}{(R^2 + a^2)^{3/2}}$ $B = B_{\chi} = \frac{M_0 I}{2 (R^2 + a^2)^{3/2}}$

KOÇ UNIVERSITY

Spring Semestre 2012

College of Arts and Sciences

Section 3

Quiz 9

19 April 2012

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

Two infinitely long, parallel wires are lying on the ground a distance a apart as shown in the figure. A third wire, of length L and mass m, carries a current of I_1 and is levitated above the first two wires, at a horizontal position midway between them. The infinitely long wires carry equal currents I_2 in the same direction, but in the direction opposite that in the levitated wire. What current must the infintely long wires carry so that the three wires form an equilateral triangle?

$$F_{y} = 0 = -mg + 2$$
, $\frac{M_0 H_1 L_1}{2 M \pi a} = 0$
= $\frac{1}{2} \frac{M_0 H_1 L_2}{1 L_2} = \frac{mg 2 \pi a}{1 2 \pi a} = 0$