KOÇ UNIVERSITY

Spring Semester 2013

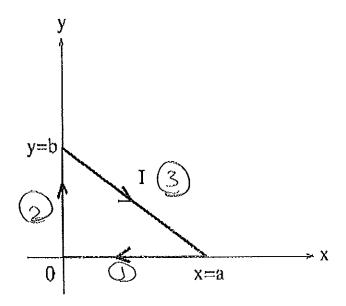
College of Arts and Sciences

Section 1

Quiz 8

05.April 2013

Closed book. No calculators are to be used for this quiz.


Quiz duration: 10 minutes

Name:

Student ID:

Signature:

If the current carrying loop shown in the figure is under a varying magnetic field given by $\vec{B} = B_0 x y \hat{j}$, calculate the total magnetic force on the loop.

(2) =
$$(\frac{1}{5}) = (\frac{1}{3}) \times (\frac{1}{3}$$

$$\begin{cases} 3 & = t \end{cases} = \frac{b}{a} (a-t) \\ \int_{a}^{b} \int_{a}^{b} (a-t) \int_{a}^{b} \int_{a}^{b} (a-t) \int_{a}^{b} \int_{a}^{b} (a-t) \int_{a}^{b} \int_{a}^$$

KOÇ UNIVERSITY

Spring Semester 2013

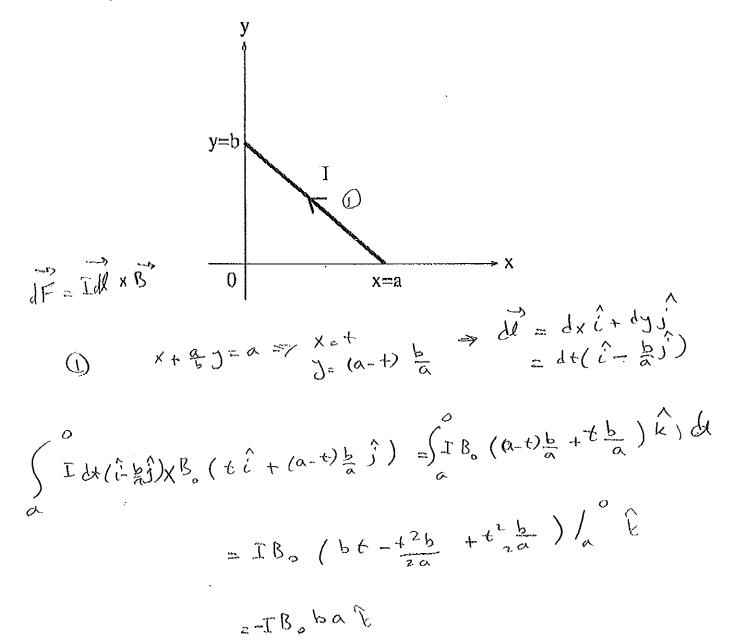
College of Arts and Sciences

Section 2

Quiz 8

05 April 2013

Closed book. No calculators are to be used for this quiz.


Quiz duration: 10 minutes

Name:

Student ID:

Signature:

If the current carrying loop shown in the figure is under a varying magnetic field given by $\vec{B} = B_0(x\hat{i} + y\hat{j})$, calculate the total magnetic force.

KOC UNIVERSITY

Spring Semester 2013

College of Arts and Sciences

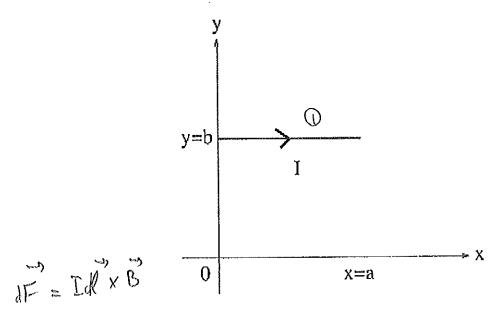
Section 3

Quiz 8

05 April 2013

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes


Name:

Student ID:

Signature:

If the current carrying wire shown in the figure is under a varying magnetic field given by

 $\ddot{B} = B_0 xy\hat{k}$, calculate the total magnetic force.

$$0 = \int I dx \hat{i} \times B \times J \hat{k} = -B \cdot b \cdot I \cdot \frac{a^2}{2} \hat{f}$$

$$\times (0, j = b)$$

KOÇ UNIVERSITY

Spring Semester 2013

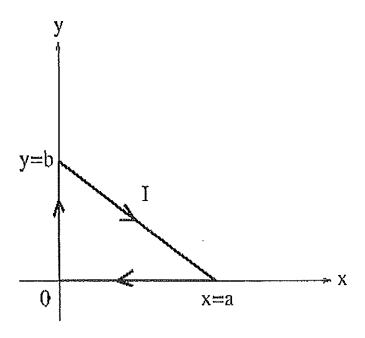
College of Arts and Sciences

Section 4

Quiz 8

05 April 2013

Closed book. No calculators are to be used for this quiz.


Quiz duration: 10 minutes

Name:

Student ID:

Signature:

If the current carrying loop shown in the figure is under a uniform magnetic field $\vec{B} = B_0 \, (2\hat{i} - \hat{k})$, calculate the total torque caused by the magnetic force.

the total F is equal zero because the magnetic field is homogenous.

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} (-\hat{k}) \times B. (2\hat{i} - \hat{k})$$

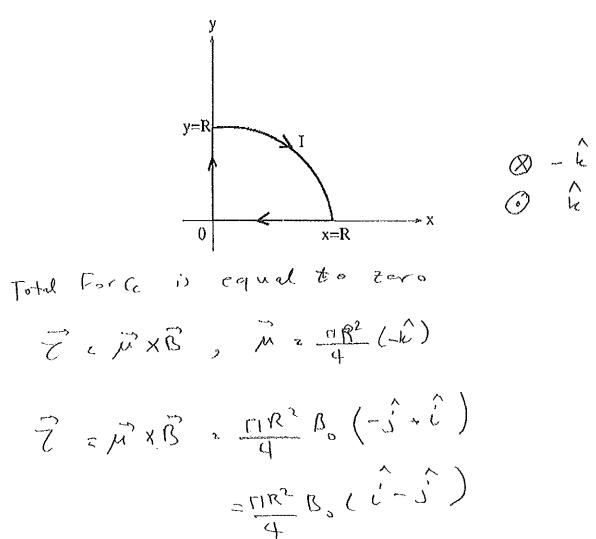
$$= \frac{\partial}{\partial x} (-\hat{k}) \times B. (2\hat{i} - \hat{k})$$

College of Arts and Sciences

Section 5

Quiz 8

05 April 2013


Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

If the current carrying loop shown in the figure is under a uniform magnetic field $\vec{B} = B_0(\hat{i} + \hat{j} + \hat{k})$, calculate the total torque caused by the magnetic force.

KOÇ UNIVERSITY

Spring Semester 2013

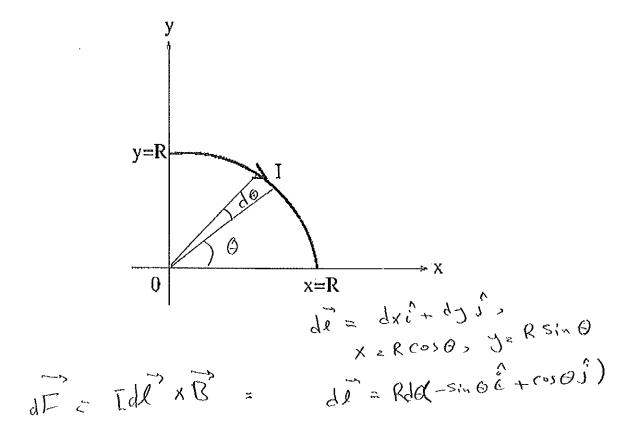
College of Arts and Sciences

Section 6

Quiz 8

05 April 2013

Closed book. No calculators are to be used for this quiz.


Quiz duration: 10 minutes

Name:

Student ID:

Signature:

If the current carrying wire shown in the figure is under a varying magnetic field given by $\vec{B} = B_0 x \hat{j}$, calculate the total magnetic force.

$$= \int_{\Gamma}^{0} \int_{\Gamma}^{2} R^{3} R^{3} \left(-\sin\theta \left(\cos\theta\right)\right) \times \cos\theta \int_{\Gamma}^{0} \left(-\sin\theta \left(\cos\theta\right)\right) d\theta = \int_{\Gamma}^{0} \frac{R^{2} R^{3}}{2} \cos\theta \int_{\Gamma}^{0} \frac{1}{2} \left(\cos\theta\right) d\theta$$

$$= \int_{\Gamma}^{0} \int_{\Gamma}^{0} R^{3} R^{3} \left(-\sin\theta \left(\cos\theta\right)\right) d\theta = \int_{\Gamma}^{0} \frac{R^{2} R^{3}}{2} \cos\theta \int_{\Gamma}^{0} \frac{1}{2} \left(\cos\theta\right) d\theta$$

$$= \int_{\Gamma}^{0} \int_{\Gamma}^{0} R^{3} R^{3} \left(-\sin\theta \left(\cos\theta\right)\right) \times \cos\theta \int_{\Gamma}^{0} \frac{1}{2} \left(\cos\theta\right) d\theta$$

$$= \int_{\Gamma}^{0} \int_{\Gamma}^{0} R^{3} R^{3} \left(-\sin\theta \left(\cos\theta\right)\right) d\theta = \int_{\Gamma}^{0} \frac{1}{2} \left(\cos\theta\right) d\theta$$

$$= \int_{\Gamma}^{0} \int_{\Gamma}^{0} R^{3} R^{3} \left(-\sin\theta \left(\cos\theta\right)\right) d\theta = \int_{\Gamma}^{0} \frac{1}{2} \left(\cos\theta\right) d\theta$$

$$= \int_{\Gamma}^{0} \int_{\Gamma}^{0} R^{3} R^{3} \left(-\sin\theta \left(\cos\theta\right)\right) d\theta = \int_{\Gamma}^{0} \frac{1}{2} \left(\cos\theta\right) d\theta$$

$$= \int_{\Gamma}^{0} \int_{\Gamma}^{0} R^{3} R^{3} \left(-\sin\theta \left(\cos\theta\right)\right) d\theta = \int_{\Gamma}^{0} \frac{1}{2} \left(\cos\theta\right) d\theta$$

$$= \int_{\Gamma}^{0} \int_{\Gamma}^{0} R^{3} R^{3} d\theta = \int_{\Gamma}^{0} \frac{1}{2} \left(\cos\theta\right) d\theta = \int_{\Gamma}$$