KOÇ UNIVERSITY

Spring Semester 2013

College of Sciences

Section 3

Quiz 11

09 May 2013

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

The switch S is closed at time t = 0. What is the power dissipated through the resistor R just after t = 0? What is the maximum energy that can be stored in such a circuit?

Just after t=0, i.(0)=0. 80 ir Req = 2rtR

$$P_{R} = i^{2}R = \left(\frac{V}{2r+R}\right)^{2} \cdot R$$

Knax) => when IR has no current through it.

KOC UNIVERSITY

Spring Semester 2013

College of Sciences

Section

Quiz 11

09 May 2013

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

The switch S is closed at time t = 0. Find the time constant of this circuit. Explain your reasoning.

KOÇ UNIVERSITY

Spring Semester 2013

College of Sciences

Section

Quiz 11

09 May 2013

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Suppose the switch S is closed for a long time and the equilibrium is reached. Then, all of a sudden, if the switch S is reopened at time t = 0, find the power dissipated through the resistor R as a function of time.

When switch Sis closed for a long time $E_R \to 0$.

Let V V =

After S is opened at time t=0

$$i(t) = i_0 e^{-t/z} \quad z = \frac{L}{R}$$

$$i_0 = \frac{V}{2r} = i$$

$$(V) = i_0 e^{-t/z} \quad z = \frac{L}{R}$$

$$i_0 = \frac{V}{2r}$$

$$\Rightarrow P_R = i^2(t)R = \left(\frac{V}{2r}\right)R^2 e^{-t/r}$$

KOÇ UNIVERSITY

Spring Semester 2013

College of Sciences

Section 2

Quiz 11

09 May 2013

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Consider the LC circuit shown in the figure. If the charge on the left plate of the capacitor is known to be $q = -Q_{max}/2$ and decreasing at time t = 0, find expressions for the charge on the left plate and current as a function of time. Here, Q_{max} is the maximum charge the capacitor can have in such a circuit.

$$q = \operatorname{Qmax} \operatorname{cos}(\omega t + \phi) \quad , \quad \omega = \frac{1}{\sqrt{LC}}$$

$$q(0) = \operatorname{Qmax} \operatorname{cos} \phi = -\operatorname{Qmax}/2$$

$$\cos(\phi) = -1/2$$

$$\phi = \frac{2\pi}{3} \text{ or } \frac{4\pi}{3} = -\frac{2\pi}{3}$$

$$q = \operatorname{Qmax} \operatorname{cos}(\omega t + 2\pi) \quad \text{since dq}(0)$$

$$= \text{the solution should decreases w.r.}$$

$$(1>0)$$

KOÇ UNIVERSITY

Spring Semester 2013

College of Sciences

Section 4

Quiz 11

09 May 2013

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Consider the LC circuit shown in the figure. If the current $i = I_{\text{max}} / 2$ is known to flow in the clockwise direction and the charge on the left plate is known to be positive at time t = 0, find expressions for the current and charge on the right plate of the capacitor as a function of time. Here, I_{max} is the maximum current in such a circuit.

charge out

night plate

<0 at time

+=0

 $dl = \Omega_{max} coo(\omega t + \phi)$ $i(t) = -\Omega_{max} coo(\omega t + \phi) = I_{max} cin(\omega t + \phi)$ $q(0) = \Omega_{max} coo(\phi) < 0$ $i(0) = I_{max} sin(\phi)$ $= I_{max}$ 2 $\Rightarrow sin\phi = I_{2} \Rightarrow \phi = I_{0} \text{ or } I_{0} - I_{0}$ dq > 0, i > 0 $\phi = I_{0} - I_{0} - I_{0}$ $\psi(t) = I_{max} sin(\omega t + SI_{0})$ $\psi(t) = I_{max} sin(\omega t + SI_{0})$ $\psi(t) = I_{max} sin(\omega t + SI_{0})$

KOÇ UNIVERSITY

Spring Semester 2013

College of Sciences

Section 5

Quiz 11

09 May 2013

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Consider the LC circuit shown in the figure. If the current $i = I_{\rm max} / 2$ is known to flow in the clockwise direction and the charge on the left plate is known to be positive at time t = T/2 where T is the period of an LC circuit, find expressions for the current and charge on the right plate of the capacitor as a function of time. Here, $I_{\rm max}$ is the maximum current in such a circuit.

$$+ c$$
 $- \frac{1}{1 - \frac{$

$$q(t) = g_{maix} \cos(\omega t + \phi)^{L}$$
 (on the night plate of apparator) i(t) = $\frac{dq}{dt} = -\omega g_{maix} \sin(\omega t + \phi)$

$$\Rightarrow \text{ Since } dq > 0 \text{ (negativeness)}$$

$$i > 0 \Rightarrow i(t) = I_{\text{maix}} = in(wt - 5\pi)$$

$$q(t) = -I_{\text{maix}} = cos(wt - 5\pi)$$