Spring Semester 2014

College of Arts and Sciences

Section 1 Quiz 4 6 March 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name: Student ID:

For the capacitor network given in the figure, the terminals a, and b are kept at a constant potential difference. What can be the value of C_3 if;

- (a) C_1 and C_3 have the same potential?
- (b) C_1 and C_3 have the same charge?
- (c) C_1 and C_2 have the same potential?
- (d) C_1 and C_2 have the same charge?

Spring Semester 2014

College of Arts and Sciences

Section 2 Quiz 4

6 March 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

The capacitors in the figure, are initially uncharged. The terminals \mathbf{a} and \mathbf{b} are connected to a battery to have a potential difference $V_{ab} = 9$ V. Calculate the potential difference between the terminals \mathbf{c} and \mathbf{d} (V_{cd}). (Hint: What is $V_{ac}+V_{cd}+V_{da}=?$).

Spring Semester 2014

College of Arts and Sciences

Section 6 Quiz 4 6 March 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name: Student ID:

For the capacitor network given in the figure, the switch S is initially open, C_1 is charged with a potential of 12 V, and C_2 and C_3 are uncharged. Then S is closed (this is a parallel connection) Calculate the ratio of the electric potential energy that was stored in capacitor C_1 before and after the switch was closed..

Spring Semester 2014

College of Arts and Sciences

Section 3 Quiz 4

6 March 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Two parallel plate capacitors in the figure are connected in parallel. In this configuration, the capacitor C_1 has charge Q_0 . Now, suppose that a dielectric slab with dielectric constant K=2 is inserted between the plates of C_2 and it fills the space between the plates completely. How much charge has flowed through the point S and in which direction?

Spring Semester 2014

Signature:

College of Arts and Sciences Section 4 Quiz 4

6 March 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name: **Student ID:**

Two identical parallel plate capacitors $C_1 = C_2 = C$ are connected in parallel and to a battery of potential difference V as shown in the figure. Consider the following separate cases:

- (I) The switch is opened so that the battery is disconnected and then the separation between the plates of C_1 is doubled.
- (II) The battery remains connected and the separation between the plates of C_1 is doubled.

Determine the ratio of the charge stored in C_2 in these cases.

Spring Semester 2014

College of Arts and Sciences

Section 5 Quiz 4 6 March 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name: Student ID:

Two parallel plate capacitors in the figure are connected in parallel. In this configuration, the capacitor C_1 has charge Q_0 . The separation between the plates of C_2 is d. Now, suppose that a <u>metal</u> slab of thickness d/3 is inserted between the plates of C_2 without touching to any of the plates. The metal slab has the same area and shape as the plates. Determine the ratio of the charge of C_2 before and after the metal slab was inserted

