Section 2 Quiz 7 27 March 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name: Student ID: Signature:

When a particle of charge q>0 moves with a velocity of  $\vec{v}_1$  at 45° from the x axis in the xy-plane, a uniform magnetic field exerts a force  $\vec{F}_1$  along the -z-axis as shown in the figure. When the same particle moves with a velocity  $\vec{v}_2$  with the same magnitude as  $\vec{v}_1$  but along the +z-axis, a force  $\vec{F}_2$  of magnitude  $F_2$  is exerted along the +x-axis.

- a) What are the magnitude (in terms of q, v, and  $F_2$ ) and direction of the magnetic field?
- b) What is the magnitude of  $\vec{F}_1$  in terms of  $F_2$ ?



Section 3 Quiz 7 27 March 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name: Student ID: Signature:

A particle with charge q is moving with speed v in the -y-direction. It is moving in a uniform magnetic field  $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$ .

- a) What are the components of the force  $\vec{F}$  exerted on the particle by the magnetic field?
- b) If q>0, what must the signs of the components of  $\vec{B}$  if the components of  $\vec{F}$  are all nonnegative?
- c) If q < 0, and  $B_x = B_y = B_z > 0$ , find the direction of  $\vec{F}$  and find the magnitude of  $\vec{F}$  in terms of |q|, v,  $B_x$

PHYS 102:General PhysicsII

**KOÇ UNIVERSITY** 

**Spring Semester 2014** 

**College of Sciences** 

**Section 4** 

Quiz 7

27 March 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

**Student ID:** 

**Signature:** 

A particle with charge q and initial velocity  $\vec{v}_0 = v_{x0}\hat{\imath} + v_{y0}\hat{\jmath}$  enters a region of uniform electric and magnetic fields. The magnetic field in the region is  $\vec{B} = B_x\hat{\imath} + B_z\hat{k}$ . Calculate the magnitude and direction of the electric field in the region if the particle is to pass through undeflected.

PHYS 102:General PhysicsII KOÇ UNIVERSITY Spring Semester 2014
College of Sciences
Section 5 Quiz 7 27 March 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name: Student ID: Signature:

A group of particles are travelling in a uniform magnetic field of unknown magnitude and direction. You observe that a proton moving at 1.00 km/s in the +x direction experience a force of  $2.00 \times 10^{-16} \text{ N}$  in the +y direction, and an electron moving at 4.50 km/s in the -z direction experiences a force of  $8.00 \times 10^{-16} \text{ N}$  in the +y direction.

- a) What are the magnitude and direction of the magnetic field?
- b) What are the magnitude and direction of the magnetic force on an electron moving in the –y direction at 3.00 km/s? ( $e=1.60\times10^{-19}$  C) (Neglect the other forces between the particles.)

Section 6 Quiz 7 27 March 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name: Student ID: Signature:

A particle with charge  $7.00\mu C$  is moving with velocity  $\vec{v} = -(3.00 \times 10^{-3} \, m/s) \hat{j}$ . The magnetic force on the particle is measured to be  $\vec{F} = +(7.00 \times 10^{-3} \, N) \hat{i} - (5.00 \times 10^{-3} \, N) \hat{k}$ .

- a) Calculate all the components of the uniform magnetic field your can from this information.
- b) Are there components of the mahnetic field that are not determined by the measurement of the force? Explain.
- c) Calculate the scalar product of  $\vec{B} \cdot \vec{F}$ . What is the angle between  $\vec{B}$  and  $\vec{F}$ ?

Section 1 Quiz 7 27 March 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name: Student ID: Signature:

A particle with charge -5.00 nC is moving in a uniform magnetic field  $\vec{B} = -(1.50\text{T})\hat{k}$ . The magnetic force on the particle is measured to be  $\vec{F} = -(3.00 \times 10^{-7} \text{N}) \hat{i} + (7.00 \times 10^{-7} \text{N}) \hat{j}$ .

- (a) Calculate all the components of the velocity of the particle that you can from this information .
- (b) Are there components of the velocity that are not determined by the measurement of the force? Explain.
- (c)Calculate the scalar product  $\vec{v}$  .  $\vec{F}$  . What is the angle between  $\vec{v}$  and  $\vec{F}$  ?