College of Arts and Sciences

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:
Student ID:
Signature:
A hollow cylindrical conductor with center axis along the z axis has inner radius R_{1} and outer radius R_{2}. The current density in the conductor (i.e between R_{1} and R_{2}) is given by $\vec{J}=J_{0} \hat{z}$ where J_{0} is a constant. Outside the conductor, the current is zero. Using Ampere's law, calculate the magnetic field $B(r)$ for $r<R_{1}, R_{1}<$ $r<R_{2}$, and $R_{2}<r$. (Ampere's law: $\oint \vec{B} \cdot d \vec{l}=\mu_{0} I$)

College of Arts and Sciences

Section 2

Quiz 9
April 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:
Student ID:
Signature:
An infinitely long wire along the y-axis is bent to form two quarter circles of radius R centered at the origin and then extends in the z direction as shown in the figure. Current I flows in the wire in the direction shown by the arrows. Determine the net magnetic field (magnitude \& direction) generated at the origin using Biot and Savart law: $d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{l} \times \hat{r}}{r^{2}}$. Also use symmetry arguments)

College of Arts and Sciences

Section 3

Quiz 9
April 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

An infinitely long wire parallel to y axis is bent to form a semicircle of radius a in the $\mathrm{x}-\mathrm{z}$ plane and centered at the origin. The intersection points of the wire with the x -axis are shown in the figure. A current I flows through the wire in the shown direction. Determine the net magnetic field (magnitude and direction) at the origin using Biot and Savart law: $d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{l} \times \hat{r}}{r^{2}}$. (Hint: For the straight wire parts use your reasoning.)

Signature:

College of Arts and Sciences

Section 4

April 2014
Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:
Student ID:
Signature:
Two infinite wires are located on the $x-y$ plane. One of the wires is oriented along the $x-$ axis and carries a current 10 A in the $-x$ direction. The other wire is oriented at an angle θ with the y-axis and carries a current of 5 A . If the magnetic field along the y-axis is zero, what must be the direction of the current of the second wire and the angle θ ? (The magnitude of the magnetic field of an infinite wire at a distance r is $B=\frac{\mu_{0} I}{2 \pi r}$)

College of Arts and Sciences

Section 6

Quiz 9
April 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:
Student ID:
Signature:
A rectangular loop wire (long edge length a, short edge length b) is placed with the short edges parallel to an infinitely long straight wire located on the x-axis as shown in the figure. The close edge of the rectangle is at a distance d from the wire. The loop carries a current I_{1} in the counterclockwise direction and the straight wire carries a current I_{2} in the +x direction. Determine the net force (magnitude and direction) acting on the loop. (Hint: the magnetic force on a straight wire of length \vec{L} with current I in constant magnetic field \vec{B} is $\vec{F}=I \vec{L} \times \vec{B}$. Also, use symmetry arguments in your solution).

College of Arts and Sciences

Section 5

Quiz 9
April 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:
Student ID:
Signature:
A very long solid cylindrical conductor of radius R has a current density $J=a r^{2}$ for $0<r<R$ flowing along the axis of the conductor (a is a constant). Outside the conductor, the current density is zero ($J=0$ for $r>R$). Using Ampere's law, determine the magnitude of the magnetic field inside and outside the conductor as a function of radial distance r from the center of the conductor. (Ampere's law: $\oint \vec{B} \cdot d \vec{l}=\mu_{0} I$)

