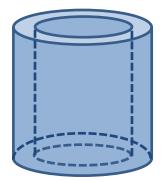
PHYS 102: General Physics 2KOÇ UNIVERSITY

Spring Semester 2014

College of Arts and Sciences

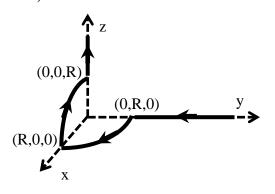
Section 1


Quiz 9

April 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name: Student ID: Signature:


A hollow cylindrical conductor with center axis along the z axis has inner radius R_1 and outer radius R_2 . The <u>current density</u> in the conductor (i.e between R_1 and R_2) is given by $\vec{J} = J_0 \hat{z}$ where J_0 is a constant. Outside the conductor, the current is zero. Using Ampere's law, calculate the magnetic field B(r) for $r < R_1$, $R_1 < r < R_2$, and $R_2 < r$. (Ampere's law: $\oint \vec{B} \cdot d\vec{l} = \mu_0 I$)

PHYS 102: General Physics 2 KOÇ UNIVERSITY Spring Semester 2014 College of Arts and Sciences Section 2 Quiz 9 April 2014 Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

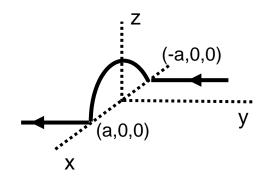
Name:	Student ID:	Signature:
-------	-------------	------------

An infinitely long wire along the y-axis is bent to form two quarter circles of radius *R* centered at the origin and then extends in the z direction as shown in the figure. Current I flows in the wire in the direction shown by the arrows. Determine the net magnetic field (magnitude & direction) generated at the origin using Biot and Savart law: $d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \hat{r}}{r^2}$. Also use symmetry arguments)

PHYS 102: General Physics 2 KOÇ UNIVERSITY

College of Arts and Sciences

Section 3

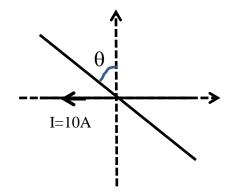

Quiz 9

April 2014

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name: Student ID:

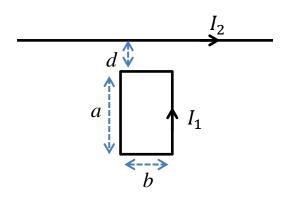
An infinitely long wire parallel to y axis is bent to form a semicircle of radius *a* in the x-z plane and centered at the origin. The intersection points of the wire with the x-axis are shown in the figure. A current I flows through the wire in the shown direction. Determine the net magnetic field (magnitude and direction) at the origin using Biot and Savart law: $d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \hat{r}}{r^2}$. (Hint: For the straight wire parts use your reasoning.)



Signature:

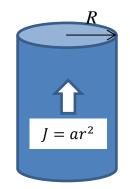
PHYS 102: General Physics 2 KOÇ UNIVERSITY Spring Semester 2014 College of Arts and Sciences Quiz 9 April 2014 Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes Quiz 9

Name:	Student ID:	Signature:
1 (unite)		Digitatul


Two infinite wires are located on the x-y plane. One of the wires is oriented along the xaxis and carries a current 10 A in the -x direction. The other wire is oriented at an angle θ with the y-axis and carries a current of 5A. If the magnetic field along the y-axis is zero, what must be the direction of the current of the second wire and the angle θ ? (The magnitude of the magnetic field of an infinite wire at a distance r is $B = \frac{\mu_0 I}{2\pi r}$)

PHYS 102: General Physics 2 KOÇ UNIVERSITY Spring Semester 2014 College of Arts and Sciences Quiz 9 April 2014 Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes April 2014

Name:Student ID:Signature:


A rectangular loop wire (long edge length a, short edge length b) is placed with the short edges parallel to an infinitely long straight wire located on the x-axis as shown in the figure. The close edge of the rectangle is at a distance d from the wire. The loop carries a current I_1 in the counterclockwise direction and the straight wire carries a current I_2 in the +x direction. Determine the net force (magnitude and direction) acting on the loop. (Hint: the magnetic force on a straight wire of length \vec{L} with current I in constant magnetic field \vec{B} is $\vec{F} = I\vec{L} \times \vec{B}$. Also, use symmetry arguments in your solution).

PHYS 102: General Physics 2 KOÇ UNIVERSITY Spring Semester 2014 College of Arts and Sciences Section 5 Quiz 9 April 2014 Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes Section 5 Section 5

Signature:

A very long solid cylindrical conductor of radius *R* has a <u>current density</u> $J = ar^2$ for 0 < r < R flowing along the axis of the conductor (*a* is a constant). Outside the conductor, the current density is zero (J = 0 for r > R). Using Ampere's law, determine the magnitude of the magnetic field inside and outside the conductor as a function of radial distance *r* from the center of the conductor. (Ampere's law: $\oint \vec{B} \cdot d\vec{l} = \mu_0 I$)

