PHYS 102: General Physics 2

KOÇ UNIVERSITY

Fall Semester 2016

College of Sciences

Section

Quiz 11

30 December 2016

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name:

\$ = 3 x

Student ID:

Signature:

An LC circuit containing an inductor L_0 and a capacitor C_0 oscillates with a maximum current of I_0 . Assuming the capacitor has its maximum charge at time t = 0, calculate the energy stored in the inductor after t seconds.

$$I(+) = I_0 \cos(w_0 + \# b)$$
where $w_0 = \frac{1}{\sqrt{LC}}$.

$$V(t) = L_0 \frac{d\Omega}{dt} = -W_0 L_0 \Gamma_0 \sin(w_0 t + \phi)$$

$$V(t) = \frac{Q(t)}{C} \Rightarrow Q(t) = V(t) C_0$$

$$Q(t=0) = -W_0 \Gamma do \sin(\theta). C_0$$
for max charge at $t=0$,
$$\sin(\phi) = -L$$

Energy stored in the inductor:

$$E_{Ind} = \frac{1}{2}LI^2$$
At time t:
 $E_{Ind}(t) = \frac{1}{2}L_0 \int_0^2 cos^2 \left(\frac{t}{VLC} + \frac{3\pi}{2}\right)$

PHYS 102: General Physics 2

KOÇ UNIVERSITY

Fall Semester 2016

College of Sciences

Section 1

Quiz 11

23 December 2016

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name:

Student ID:

Signature:

An ideal battery with voltage V_0 , a resistor with resistance R_0 , and an ideal inductor with inductance L_0 are all connected in series with an open switch. The switch is suddenly closed. How long after closing the switch will the current through the inductor reach one-half of its maximum value?

$$V_{0} - iR_{0} - L_{0} \frac{di}{dt} = 0$$

For max i,
$$(1-e^{-\frac{lot}{Lo}})=0$$
 $\lim_{N\to\infty} \frac{V_0}{R_0}$

For half of max:

 $\lim_{N\to\infty} \lim_{N\to\infty} (1-e^{-\frac{lot}{Lo}})$
 $\lim_{N\to\infty} \lim_{N\to\infty} \lim_{N\to\infty} (1-e^{-\frac{lot}{Lo}})$
 $\lim_{N\to\infty} \lim_{N\to\infty} \lim_{N\to\infty}$