Closed book. No calculators are to be used for this quiz.

Quiz duration: 15 minutes

Name:

Student ID:

Signature:

$$k \simeq 9 \times 10^9 Nm^2/C^2$$

$$\epsilon_0 \simeq 9 \times 10^{-12} C^2/Nm^2$$

$$\pi \simeq 3$$

Q. A neutral hollow spherical conducting shell of inner radius 1.0 cm and outer radius 2.0 cm has a 3.0 μ C point charge placed at its center. Find the surface charge density on the inner surface of the shell (show your work).

Hint: Use Gauss's Law with a Gauss surface inside the conducting shell.

Closed book. No calculators are to be used for this quiz.

Quiz duration: 15 minutes

Name:

Student ID:

Signature:

Q. An infinitely long nonconducting cylinder of radius R carries a uniform volume charge density ρ (units: C/m³). Calculate the electric field magnitude at distance R/2 from the axis of the cylinder.

Gauss's law & E. dA = 9

>> E. ZAYL = PAYZL

 $\partial E = \frac{pr}{2E_0}$

9= PA = PXx2L

at $r = \frac{R}{2} \Rightarrow \mathcal{E} = \frac{PR}{4E_n}$

Closed book. No calculators are to be used for this quiz.

Quiz duration: 15 minutes

Name:

Student ID:

Signature:

Q. The electric field on the xy-plane of an infinitely long, uniformly charged wire along the z-axis is

$$\vec{E} = \frac{\lambda}{2\pi\epsilon_0 r} \, \dot{r} \ .$$

where λ is the line charge density and $\vec{r} = (x, y)$. What is the electric field at \vec{r} if a second wire parallel and identical to the first one, passing through the point $\vec{r}_0 = (x_0, y_0)$ is added?

first wire
$$\vec{\xi}_1 = \frac{\lambda}{2\pi \epsilon} \hat{r}$$

second wire $\vec{\xi}_2 = \frac{\lambda}{2\pi \epsilon} \hat{r}'$
 $\vec{\xi} = \vec{\xi}_1 + \vec{\xi}_2 = \frac{\lambda}{2\pi \epsilon} \left(\frac{\hat{r}}{r} + \frac{\hat{r}'}{r'} \right)$

where T = (x, y) , 1 = (x-x, y-y,)

$$\Im \mathcal{E} = \frac{\lambda}{2\pi\epsilon} \left(\frac{\vec{r}}{|\vec{r}|^2} + \frac{\vec{r} - \vec{r}_0}{|\vec{r} - \vec{r}_0|^2} \right)$$

Closed book. No calculators are to be used for this quiz.

Quiz duration: 15 minutes

Name:

Student ID:

Signature:

$$k \simeq 9 \times 10^9 Nm^2/C^2$$

$$\epsilon_0 \simeq 9 \times 10^{-12} C^2/Nm^2$$

$$\pi \sim 3$$

Q. A cone is resting on a tabletop as shown in the figure with its face horizonal. The radius of the cone's circular base is 1.0 cm. and its height is 2.0 cm. A uniform electric field of magnitude 4.0×10^3 N/C points vertically upward. How much electric flux passes through the sloping side surface area of the cone?

Hint: Use Gauss's Law by considering the side surface and the base of the cone together as a closed Gauss surface.

Gauss's law >> Total flux through the cone is zero

Total flux = flux through the flat surface

- flux through the sloping surface = 0

>> flux
flat surface sloping surface

$$\Rightarrow$$
 + $\frac{1}{2}$ = $\frac{1.2}{C}$ = $\frac{1.2}{C}$ $\frac{N.m^2}{C}$

Closed book. No calculators are to be used for this quiz.

Quiz duration: 15 minutes

Name:

Student ID:

Signature:

Q. A solid nonconducting sphere of radius R carries a uniform charge density throughout its volume. At a radial distance $r_1 = R/4$ from the center, the electric field has magnitude E_0 . What is the magnitude of the electric field at a radial distance $r_2 = 2R$? Give your answer in terms of E_0 .

Hint: The electric field strength inside the sphere is linearly dependent on the distance from the center.

$$q = Q \frac{V^3}{R^3}$$