Name:	Signature:
Surname:	Student ID Number:

PHYS 102 General Physics II - Final

5 January 2018, Friday 18:15-19:45

Please read!

- Count to make sure that there are 5 pages in the question booklet
- Check your name and surname on front page, and student ID number on each page, and sign each page.
- This examination is conducted with closed books and notes.
- Put all your personal belongings underneath your seat and make sure that pages of books or notebooks are not open.
- Absolutely no talking or exchanging anything (like rulers, erasers) during the exam.
- You must show all your work to get credit; you will not be given any points unless you show the details of your work (this applies even if your final answer is correct!).
- Write neatly and clearly; unreadable answers will not be given any credit.
- If you need more writing space, use the backs of the question pages and put down the appropriate pointer marks.
- Make sure that you include units in your results.
- Make sure that you label the axis and have units in your plots.
- You are not allowed to use calculators during this exam.
- Only the answers in the boxes will be graded and NO partial credit will be given. No points will be given to unjustified answers. Incomplete calculations will not be graded

P102_Index:

1	2	3	4	TOTAL

Exam Room:	P102_Index:
Student ID Number:	Signature:

1- (25 pts) A cylindrical and infinitely long cable with a radius r_{0} carries a current I_{0}. The current is uniformly distributed over the cross sectional area and the cable is held in a stationary position. A square wire loop of resistance \mathbf{R} is projected toward the cable with initial velocity V_{o}. The total mass of the loop is m_{0}. Assume that initially the wire is located at the distance $\mathbf{5 L}$ away from the center of the cable.
a) Calculate the total magnetic flux penetrating through the square loop.

$$
\Phi_{B}=
$$

b) Calculate the induced emf \mathcal{E} in the loop.

$$
\varepsilon=
$$

c) Calculate the induced current $I_{\text {ind }}$ in the loop and show the direction of the current.

$$
\mathrm{I}_{\text {ind }}=
$$

d) Calculate the total force applied on the loop

$$
\mathbf{F}=
$$

e) In order to place the wire to the position \mathbf{L} away from the cable, calculate the initial velocity $\mathbf{V}_{\mathbf{0}}$ of the wire. (Assume that $\mathbf{L}>\mathbf{r}$)

$$
\mathbf{V}_{0}=
$$

Exam Room:	P102_Index:
Student ID Number:	Signature:

2- (25 pts) As shown in the figure, a simple RL circuit ($L=1 H, R=2$ ohm) is powered by a $\mathbf{1 0} \mathbf{V}$ batterey. The initial current in the circuit is zero. ($\mathrm{e}^{-1}=0.367, \mathrm{e}^{-2}=0.135, \mathrm{e}^{-3}=0.049, \mathrm{e}^{-4}=0.018, \mathrm{e}^{-5}=0.006$)

a) Calculate the time constant of the RL circuit.
$\tau=$
b) Calculate and plot the $\operatorname{VR}(\mathrm{t})$ voltage across the resistor R 0 , as a function of time
VR(t)=
c) Calculate and plot $\mathrm{V}_{\mathrm{L}}(\mathrm{t})$ and voltage across the inductor as a function of time.

$$
\mathbf{V}_{\mathbf{L}}(\mathbf{t})=
$$

d) Calculate and plot $\mathbf{P}(\mathbf{t})$ the power disipation on the resistor.

$$
\mathbf{P}(\mathbf{t})=
$$

e) Calculate the total energy stored in the inductor when the circuit reachs the saturation.

```
E=
```

f) As given in the figure below if we attached lamps with constand internal resistance (Rin=1 Ohm) to the circuit, schematically plot the brightness (IL) of the lamps as a fuction of time after turning the switch on.

Exam Room:	P102_Index:
Student ID Number:	Signature:

3-(25 pts) As shown in the figure, A simple RLC circuit is driven by a AC current supply. The RMS value of the current source $\mathrm{I}_{\mathrm{rms}}=1.4 \mathrm{Amp} . R_{0}=15 \Omega, \mathrm{~L}=0.5 \mathrm{H}, \mathrm{C}=5 \times 10^{-3} \mathrm{~F}$. (Take $\sqrt{2}=1.4, \pi=3$).

a) What is the resonance frequency f of the circuit in terms of Hz ?
b) When the source operates at $f=6.6 \mathrm{~Hz}$, calculate the $\mathrm{V}_{\mathrm{R}}(\mathrm{t}), \mathrm{V}_{\mathrm{L}}(\mathrm{t}), \mathrm{V}_{\mathrm{C}}(\mathrm{t})$ and $\mathrm{V}_{\mathrm{T}}(\mathrm{t})$ total voltage of the circuit.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{R}}(\mathrm{t})= \\
& \mathrm{V}_{\mathrm{L}}(\mathrm{t})= \\
& \mathrm{V}_{\mathrm{C}}(\mathrm{t})= \\
& \mathrm{V}_{\mathrm{T}}(\mathrm{t})=
\end{aligned}
$$

c) Calculate the average power $\mathrm{P}($ ave $)$ over a cycle of the circuit.

$$
P(\text { ave })=
$$

Exam Room:	P102_Index:
Student ID Number:	Signature:

4 (25 pts) A typical microwave oven is based on a super positon of two forward (E^{+}) and backward (E^{-}) propagating electromagnetic waves having a wavelength of 12 cm . Assume that E_{0} is the max amplitude of the electric field (speed of light $\mathrm{C}=3 \times 10^{8}$ $\mathrm{m} / \mathrm{sec}$).
a) What is the frequency f of the electromagnetic wave.

```
f=
```

b) Write the electric field vector $\left(\mathrm{E}^{+}\right)$of sinusoidal electromagnetic wave freely propagating in +X but oscillating in Z directions.

$$
\mathrm{E}^{+}=
$$

c) Write the electric field vector (E^{-}) of sinusoidal electromagnetic wave freely propagating in $-X$ and but oscillating in Z direction.

$$
\mathrm{E}^{-}=
$$

d) Write the electric field vector of a standing electromagnetic wave formed by the superposition of ($E^{+}+E^{-}$).

$$
\left(\mathrm{E}^{+}+\mathrm{E}^{-}\right)=
$$

e) Calculate the first four minimum possible lengths of a microwave oven. (Consider only one dimension X).

$$
\begin{aligned}
& L_{1}= \\
& L_{2}= \\
& L_{3}= \\
& L_{4}=
\end{aligned}
$$

