Name, Surname:	Signature:
Exam Room:	Student ID Number:

PHYS 102 General Physics II - Midterm 2

20 November, 2019 Wednesday 19:00-20:40

Please read!

- Count to make sure that there are 5 pages in the question booklet
- Check your name and surname on front page, and student ID number on each page, and sign each page.
- This examination is conducted with closed books and notes.
- Put all your personal belongings underneath your seat and make sure that pages of books or notebooks are not open.
- Absolutely no talking or exchanging anything (like rulers, erasers) during the exam.
- You must show all your work to get credit; you will not be given any points unless you show the details of your work (this applies even if your final answer is correct!).
- Write neatly and clearly; unreadable answers will not be given any credit.
- If you need more writing space, use the backs of the question pages and put down the appropriate pointer marks.
- Make sure that you include units in your results.
- Make sure that you label the axis and have units in your plots.
- You are not allowed to use calculators during this exam.
- Only the answers in the boxes will be graded and NO partial credit will be given. No points will be given to unjustified answers. Incomplete calculations will not be graded

P102_Index:

1	2	3	4	TOTAL

Exam Room:	P102_Index:
Student ID Number:	Signature:

1- (25 pts) Consider the circuit shown in the figure. Assume each resistor has resistance $R=10 \Omega$. Batteries have different emfs given by $\varepsilon_{1}=9 \mathrm{~V}$ and $\varepsilon_{2}=6 \mathrm{~V}$. Find the current in each three branches in the circuit.

Exam Room:	P102_Index:
Student ID Number:	Signature:

2- ($\mathbf{2 5} \mathbf{~ p t s}$) A conducting ring of radius R lies in the xy plane with its center at the coordinate origin. The ring carries a clockwise current I. If the external magnetic field in the xy plane is given by $\vec{B}=a \vec{r}+b \hat{\jmath}$, where $\vec{r}=r \hat{r}$ is the position from the origin, $\widehat{\jmath}$ is a unit vector along the $+y$ axis, and a and b are positive constants:
(a-15pts) Calculate the magnitude and direction of the net force on the ring.

\square
(b-10pts) Calculate the magnitude and direction of the net torque on the ring.

Exam Room:	P102_Index:
Student ID Number:	Signature:

3- ($\mathbf{2 5} \mathbf{~ p t s) ~ T w o ~ i n f i n i t e ~ w i r e s ~ a r e ~ p a r a l l e l ~ t o ~ t h e ~} y$-axis and they carry currents I as shown with the arrows.
a) Find the magnetic field \vec{B} (all three components) on the x-axis as a function of the coordinate x. Ignore the circular current loop in the figure in this part.

b) We put a circular current loop of radius a centered at the origin on the $x-y$ plane also carrying a current I, as shown in the figure. What is the magnetic field \vec{B} (all three components) at the point $(x, y, z)=(0,0,2 a)$?

c) What is the magnetic dipole moment vector $\vec{\mu}$ of the current loop in part (b)?

Exam Room:	P102_Index:
Student ID Number:	Signature:

4- (25 pts) An infinitely long insulating cylinder of radius a lies along the z-axis (the cross section is in the figure). The cylinder has uniform volume charge density ρ, and is moving in the $+z$ direction with speed v as a whole. This system is equivalent to a wire of the same cylindrical shape, carrying an electric current I.
(a) Calculate the magnetic field \vec{B} (all three components) at the point $(x, y, z)=(2 a, 0,0)$ in terms of I, a and the fundamental
 physical constants.

(b) Calculate the magnetic field \vec{B} (all three components) at the point $(x, y, z)=$ $\left(\frac{a}{2}, \frac{a}{2}, 0\right)$ in terms of I, a and the fundamental physical constants.
(c) Express I in terms of ρ, v and a.

