College of Sciences

Section 1

Quiz 12

18 December 2015

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name: Vahdet Ung | Student ID:

Signature:

Consider electromagnetic waves propagating in air. Take $c = 3 \times 10^8 \, m/s$. a)Determine the frequency of a wave with a wavelength of

- (i) 5 km,
- (ii) 5 μm,
- (iii) 5 nm.
- b) What is the wavelength (in meters and nanometers) of
- (i) gamma rays of frequency 6.5×10^{21} Hz and
- (ii) an AM station radio wave of frequency 590 kHz.?

$$\alpha$$
.) $f = \frac{c}{\lambda}$

ii)
$$f = \frac{3 \times 10^8 \, \text{m/s}}{5 \times 10^3 \, \text{m}} = 6 \times 10^4 \, \text{s}^{-1} = 6 \times 10^4 \, \text{Hz}$$

iii)
$$f = \frac{3 \times 10^8 \text{ m/s}}{5 \times 10^{-6}} = 6 \times 10^{13} \text{ s}^{-1} = 6 \times 10^{13} \text{ Hz}$$

iii.)
$$f = \frac{3 \times 10^8 \text{ m/s}}{5 \times 10^9 \text{ m}} = 6 \times 10^{16} \text{ s}^{-1} = 6 \times 10^{16} \text{ Hz}$$

$$\beta = \frac{c}{t}$$

i.)
$$\lambda = \frac{3 \times 10^8 \text{ m/s}}{6.5 \times 10^{21} \text{ Hz}} = 4.6 \times 10^{-14} \text{ m}$$

ii.)
$$\lambda = \frac{3 \times 10^8 \text{ m/s}}{590 \times 10^3 \text{ Hz}} = 5.08 \times 10^2 \text{ m}$$

PHYS 102: General Physics 2

KOÇ UNIVERSITY

Fall Semestre 2015

College of Sciences

Section 3

Quiz 12

18 December 2015

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

An electromagnetic wave with frequency 60 Hz travels in an insulating magnetic material that has dielectric constant 3.5 and relative permeability 4.6 at this frequency. Electric field has amplitude $7.5 \times 10^{-3} V/m$.

- a) What is the speed of propagation of the wave?
- b) What is the wavelength of the wave?
- c) What is the amplitude of the magnetic field?

$$v = \frac{c}{n} = \frac{3 \times 10^8 \text{ m/s}}{4.0} = 7.5 \times 10^7 \text{ m/s}$$

b.)
$$\lambda = \frac{v}{f} = \frac{3.5 \times 10^{3} \text{ m/s}}{60 \text{ Hz}} = 1.25 \times 10^{6} \text{ m}$$

ci)
$$e_{max} = \frac{E_{max}}{1} = \frac{2.5 \times 10^{-3} \text{ V/m}}{2.5 \times 10^{7} \text{ m/s}} = 1.0 \times 10^{-10} \text{ T}$$

College of Sciences

Section 2

Quiz 12

18 December 2015

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

The electric field of a sinusoidal electromagnetic wave obeys the equation $E = (375 V / m) \cos \left[(2 \times 10^7 \ rad / m) x + (6 \times 10^{15} \ rad / s) t \right]$ Take $\pi = 3$.

- a) What are the amplitudes of the electric and magnetic fields of this wave?
- b) What are the frequency, wavelength and period of the wave? Is this light visible to humans?
- c) What is the speed of the wave?

$$f = \frac{\omega}{2\pi} = \frac{6 \times 10^{15} \text{ rad/s}}{2 \times \text{ rad}} = 1 \times 10^{15} \text{ Hz}$$

$$1 = \frac{2\pi}{k} = \frac{2 \times \text{ rad}}{2 \times 10^{7} \text{ rad/m}} = 3 \times 10^{-7} \text{ m} = 300 \text{ nm}$$

$$T = \frac{2\pi}{\omega} = \frac{1}{f} = 1 \times 10^{-15} \text{ s}$$

Visible light is in 380 nm - 750 nm wavelength range. This light is not visible.

c)
$$V = \lambda f = (3 \times 10^{-7} \text{ m})(1 \times 10^{15} \text{ Hz}) = 3 \times 10^8 \text{ m/s}$$

$$B_{\text{max}} = \frac{375 \text{ V/m}}{v} = \frac{375 \text{ V/m}}{3 \times 10^8 \text{ m/s}} = 1.25 \times 10^{-6} \text{ T}$$