Name, Surname:	Student ID Number:
Exam Room:	Signature:

KOÇ UNIVERSITY

College of Sciences

PHYS 102 General Physics 2
Fall Semester 2022
Final Exam

January 16, 2022 Monday, 11:45-13:45

Please read.

- Please turn off mobile phones and stow away your belongings. Have your student ID ready for attendance check. Only exam booklet, pencil and eraser are allowed throughout the exam.
- Check that there are 4 question sheets in this question booklet.
- Use only black pencil for writing.
- Write your name, number, on front page, and student ID on each page.
- Write neatly and clearly; unreadable answers will not be given any credit.
- Final answers must be written into the respective answer box. It may not get credit otherwise.
- A final answer that is not based on a reasonable, consistent solution attempt on the exam paper may not get credit even if it coincides with the correct answer.
- Use the back pages in case you need more blank space. Label the continuing solution clearly.

IMPORTANT: Do not continue the solution of a question on a different question sheet!

- Mathematical expressions in the result must be simplified as possible. Mathematical and physical constants may be left in symbolic form unless their numerical value for a calculation is explicitly provided in the problem.
- If applicable, make sure to include units in your final answer.
- In graphing questions, use proper scaling, label the axes and indicate units.
- Using calculators is not allowed.
- Students must respect the time restrictions on leaving/entering the exam room as stated by the exam proctors.

Integrals:

$$
\left.\begin{array}{ll}
\int x^{n} d x=\frac{x^{n+1}}{n+1}(n \neq-1) & \int \frac{d x}{x}=\ln x
\end{array} \int e^{a x} d x=\frac{1}{a} e^{a x}\right]\left(\sqrt{a} \cos a x d x=\frac{1}{a} \sin a x \quad \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a} .\right.
$$

P102_Index:

1	2	3	4	Total

P102_Index:	Student ID Number:
Exam Room:	Signature:

Q1-(25 pts) A vertically oriented square loop of copper wire falls through a region where a uniform horizontal (into the page) magnetic field \boldsymbol{B} is present. As shown in the figure, the magnetic field is present only in the rectangular shaded area. The total resistance of the wire is \boldsymbol{R}, the mass is \boldsymbol{m} and the side length of the loop is \boldsymbol{l}. When the loop reaches constant terminal speed its upper segment is still in the magnetic field region. ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
a) Calculate the terminal speed of the falling loop.
b) Indicate the direction of the induced current along the loop at the instant shown in the picture and give a detailed physical argument supporting your answer.

P102_Index:	Student ID Number:
Exam Room:	Signature:

Q2- (25 pts) A toroidal solenoid with rectangular cross section has inner radius R_{1}, outer radius R_{2}, height L, and consists of N uniformly spaced turns of wire. The material in the cross section is air.
a) Calculate the magnetic field $\boldsymbol{B}(\boldsymbol{r})$ in the crosssectional area of the toroid as a function of radial distance from the center. (Assume that the magnetic field does not depend on the height direction)

b) Using the magnetic field $\boldsymbol{B}(\boldsymbol{r})$ found in part (a), calculate the total magnetic flux through the cross section of the toroid when a current i_{0} is applied.

c) Calculate the inductance \mathbf{L} of the solenoid.

P102_Index:	Student ID Number:
Exam Room:	Signature:

Q3- (25 pts) A conducting circular loop of radius R centered at the origin is folded about its diameter along the y axis to form two mutually perpendicular semicircular arcs and placed in a uniform magnetic field $\vec{B}=-B \hat{k}$ as shown. Let θ be the angle measured from $\mathrm{x}-$ axis in clockwise rotation of the loop about the y-axis (that is, for $\theta=0$, the loop coincides with the x and z axes when viewed from y-axis)

a) Calculate the magnetic flux through the loop as a function of θ. Caution: The loop is nonplanar. Verify that the sign of the flux is consistent with your choice of positive flux direction and also check that $\theta=0$ and $\theta=\pi / 2$ give expected results.
a) Find the value of θ for which the flux through the loop has maximum absolute value.
b) Let $\theta=\omega t$, that is, at $t=0$, the loop starts to rotate about y-axis with constant speed ω. Find the induced emf along the loop. When does the induced emf take its maximum absolute value first after the loop starts to rotate?

P102_Index:	Student ID Number:
Exam Room:	Signature:

4- (25 pts) Answer the following in proper scaled SI units. Tip: First solve algebraically and then make the numerical calculation.
a) In the circuit, both capacitors are initially uncharged.

The switch S is closed at $t=0$. Calculate i_{R}, i_{L} at $t=0$.

b) When the current in the circuit reached steady state, calculate the energy stored in the $2 \mu \mathrm{~F}$ capacitor and in the inductor.
c) After the current reached steady state, S is opened and time is reset to $t=0$. Calculate the maximum charge the $2 \mu \mathrm{~F}$ capacitor can get.

d) Calculate the first time when the $2 \mu F$ capacitor get its maximum charge after S is opened.

