Name, Surname:	Student ID Number:
Exam Room:	Signature:

KOÇ UNIVERSITY

College of Sciences

PHYS 102 General Physics 2
Fall Semester 2022
Midterm 2 Exam
December 30, 2022 Friday, 19:00-21:00

Please read.

- Please turn off mobile phones and stow away your belongings. Have your student ID ready for attendance check. Only exam booklet, pencil and eraser are allowed throughout the exam.
- Check that there are 4 question sheets in this question booklet.
- Use only black pencil for writing.
- Write your name, number, on front page, and student ID on each page.
- Write neatly and clearly; unreadable answers will not be given any credit.
- Final answers must be written into the respective answer box. It may not get credit otherwise.
- A final answer that is not based on a reasonable, consistent solution attempt on the exam paper may not get credit even if it coincides with the correct answer.
- Use the back pages in case you need more blank space. Label the continuing solution clearly.

IMPORTANT: Do not continue the solution of a question on a different question sheet!

- Mathematical expressions in the result must be simplified as possible. Mathematical and physical constants may be left in symbolic form, unless their numerical value for a calculation is explicitly requested in the problem.
- If applicable, make sure to include units in your final answer.
- In graphing questions, use proper scaling, label the axes and indicate units.
- Using calculators is not allowed.
- Students must respect the time restrictions on leaving/entering the exam room as stated by the exam proctors.

Integrals:

$$
\left.\begin{array}{ll}
\int x^{n} d x=\frac{x^{n+1}}{n+1}(n \neq-1) & \int \frac{d x}{x}=\ln x
\end{array} \quad \int e^{a x} d x=\frac{1}{a} e^{a x}\right]\left(\sin a x d x=-\frac{1}{a} \cos a x \quad \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a} .\right.
$$

P102_Index:

1	2	3	4	Total

P102_Index:	Student ID Number:
Exam Room:	Signature:

Q1-(25 pts) A bulb with resistor R is connected across the terminals of a battery which has emf ε and internal resistance. It is found that 85% of the power is delivered to the bulb. Answer the following accordingly.
a) (15 pts) Determine the internal resistance of the battery in terms of R.

b) (10 pts.) For $R=6.8 \Omega$, determine the potential difference across the terminals of the battery in the circuit in terms of ε.

P102_Index:	Student ID Number:
Exam Room:	Signature:

Q2- (25 pts) The circuit in the figure contains an ideal battery V, resistors R_{1}, R_{2}, an uncharged capacitor C and a switch. Answer the following in terms of these given parameters only.

a) [5 pts.] At time $t=0$, the switch is closed. Calculate $v_{R 1}$ (the potential across R_{1}) and $i_{R 2}$ (the current through the resistor R_{2}) at $t=0$.

$$
\begin{aligned}
& v_{R 1}= \\
& i_{R 2}=
\end{aligned}
$$

b) [8 pts.] When fully charged, calculate the amount charge stored in the capacitor.

$$
Q_{f}=
$$

c) [12 pts.] When the capacitor is fully charged, the switch is opened. Calculate the time required for $v_{R 2}$ (the potential across R_{2}) to decrease to $\frac{1}{5}$ th of the value it had before the opening of the switch.

P102_Index:	Student ID Number:
Exam Room:	Signature:

Q3- (25 pts) Two infinitely long current-carrying straight wires cross at 90-degree angle as shown in the Figure. The wires carry the same amount of current I_{0} and they do not have electrical contact.
a) Calculate the magnetic field along the given x-axis and y-axis as a function of distance from the origin. Indicate the direction of magnetic field clearly.

b) Suppose that a positively charged particle starts to move with $\vec{v}=v_{0} \hat{\jmath}$ initial velocity on the y-axis. Calculate the force acting on the particle and plot the trajectory.

$$
\vec{F}=
$$

c) Part of a cable is located on the x -axis between points $x=L, x=2 L$. The cable carries a current I_{0} in the $\hat{\imath}$ direction. Calculate the magnetic force \vec{F} acting on this part of the cable.

$$
\vec{F}=
$$

P102_Index:	Student ID Number:
Exam Room:	Signature:

Q4- (25 pts) A solid cylindrical conductor of radius R and a thin hollow cylindrical conductor of radius $3 R$ form a coaxial cable that is infinitely long. The inner conductor carries current $I_{1}=$ $3.0 A$, the outer conductor carries a current $I_{2}=-9 A$ (in opposite direction). The currents are uniformly distributed respectively through the inner solid conductor and on the surface of the outer conductor. Take the origin on the center
 axis (z-axis) of the cables.
a) Calculate the magnitude and the direction of the magnetic field $\vec{B}(r)$ for the regions given below as a function of distance (r) from the center.

$$
r>3 R, \quad B(r)=
$$

$$
\mathrm{R}<\mathrm{r}<3 \mathrm{R}, \mathrm{~B}(\mathrm{r})=
$$

$$
\mathrm{r}<\mathrm{R}, \quad \mathrm{~B}(\mathrm{r})=
$$

b) Plot the magnetic field $\vec{B}(r)$ as a function of distance from the center, taking the direction into account.

