Name, Surname:	Student ID Number:
Exam Room:	Signature:

KOÇ UNIVERSITY College of Sciences PHYS 102 General Physics 2 Fall Semester 2022 Midterm 2 Exam December 30, 2022 Friday, 19:00-21:00

Please read.

• Please turn off mobile phones and stow away your belongings. Have your student ID ready for attendance check. Only exam booklet, pencil and eraser are allowed throughout the exam.

- Check that there are 4 question sheets in this question booklet.
- Use only black pencil for writing.
- Write your name, number, on front page, and student ID on each page.
- Write neatly and clearly; unreadable answers will not be given any credit.

• <u>Final answers must be written into the respective answer box. It may not get credit</u> <u>otherwise.</u>

• A final answer that is not based on a reasonable, consistent solution attempt on the exam paper may not get credit even if it coincides with the correct answer.

• Use the back pages in case you need more blank space. Label the continuing solution clearly.

IMPORTANT: Do not continue the solution of a question on a different question sheet!

• Mathematical expressions in the result must be simplified as possible. Mathematical and physical constants may be left in symbolic form, unless their numerical value for a calculation is explicitly requested in the problem.

- If applicable, make sure to include units in your final answer.
- In graphing questions, use proper scaling, label the axes and indicate units.
- Using calculators is not allowed.
- Students must respect the time restrictions on leaving/entering the exam room as stated by the exam proctors.

Integrals:

$$\int x^n dx = \frac{x^{n+1}}{n+1} \quad (n \neq -1) \qquad \qquad \int \frac{dx}{x} = \ln x \qquad \qquad \int e^{ax} dx = \frac{1}{a} e^{ax}$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax \qquad \qquad \int \cos ax \, dx = \frac{1}{a} \sin ax \qquad \qquad \int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}$$

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left(x + \sqrt{x^2 + a^2}\right) \qquad \qquad \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} \qquad \qquad \int \frac{dx}{(x^2 + a^2)^{3/2}} = \frac{1}{a^2} \frac{x}{\sqrt{x^2 + a^2}}$$

$$\int \frac{x \, dx}{(x^2 + a^2)^{3/2}} = -\frac{1}{\sqrt{x^2 + a^2}}$$

			P102_In	P102_Index:		
1	2	3	4	Total		

P102_Index:	Student ID Number:
Exam Room:	Signature:

Q1-(25 pts) A bulb with resistor *R* is connected across the terminals of a battery which has emf ε and internal resistance. It is found that 85% of the power is delivered to the bulb. Answer the following accordingly.

a) (15 pts) Determine the internal resistance of the battery in terms of *R*.

b) (10 pts.) For $R = 6.8\Omega$, determine the potential difference across the terminals of the battery in the circuit in terms of ε .

P102_Index:	Student ID Number:
Exam Room:	Signature:

Q2- (25 pts) The circuit in the figure contains an ideal battery *V*, resistors R_1 , R_2 , an uncharged capacitor *C* and a switch. Answer the following in terms of these given parameters only.

a) [5 pts.] At time t = 0, the switch is closed. Calculate v_{R1} (the potential across R_1) and i_{R2} (the current through the resistor R_2) at t = 0.

b) [8 pts.] When fully charged, calculate the amount charge stored in the capacitor.

c) [12 pts.] When the capacitor is fully charged, the switch is opened. Calculate the time required for v_{R2} (the potential across R_2) to decrease to $\frac{1}{5}$ th of the value it had before the opening of the switch.

P102_Index:	Student ID Number:
Exam Room:	Signature:

Q3- **(25 pts)** Two infinitely long current-carrying straight wires cross at 90-degree angle as shown in the Figure. The wires carry the same amount of current I_0 and they do not have electrical contact.

a) Calculate the magnetic field along the given x-axis and y-axis as a function of distance from the origin. Indicate the direction of magnetic field clearly.

b) Suppose that a positively charged particle starts to move with $\vec{v} = v_0 \hat{j}$ initial velocity on the *y*-axis. Calculate the force acting on the particle and plot the trajectory.

c) Part of a cable is located on the x-axis between points x = L, x = 2L. The cable carries a current I_0 in the \hat{i} direction. Calculate the magnetic force \vec{F} acting on this part of the cable.

P102_Index:	Student ID Number:
Exam Room:	Signature:

Q4- (25 pts) A solid cylindrical conductor of radius *R* and a thin hollow cylindrical conductor of radius 3*R* form a coaxial cable that is infinitely long. The inner conductor carries current $I_1 = 3.0 A$, the outer conductor carries a current $I_2 = -9A$ (in opposite direction). The currents are uniformly distributed respectively through the inner solid conductor and on the surface of the outer conductor. Take the origin on the center axis (*z*-axis) of the cables.

a) Calculate the magnitude and the direction of the magnetic field $\vec{B}(r)$ for the regions given below as a function of distance (r) from the center.

r> 3R,	B(r) =
R < r < 3R,	B(r) =
r< R,	B(r) =

b) Plot the magnetic field $\vec{B}(r)$ as a function of distance from the center, taking the direction into account.

R	2 <i>R</i>	3 <i>R</i>	4 <i>R</i>	5 <i>R</i>
	R	R 2R	R 2R 3R	R 2R 3R 4R