Name:	Signature:
Surname:	Number:

KOÇ UNIVERSITY

College of Sciences PHYS 102 General Physics 2 Spring Semester 2017 Midterm Exam 1 March 14, 2017 Thursday, 19:00-20:40

Please read.

- Count to make sure that there are 5 pages in this question booklet
- Check your name, number, on front page, and student ID on each page.
- This examination is conducted with closed books and notes.

• Put all your personal belongings underneath your seat and make sure that pages of books or notebooks are not open.

• Absolutely no talking or exchanging anything (like rulers, erasers) during the exam.

• You must show all your work to get credit; you will not be given any points unless you show the details of your work (this applies even if your final answer is correct).

- Write neatly and clearly; unreadable answers will not be given any credit.
- If you need more writing space, use the backs of the question pages and put down the appropriate pointer marks.
- Make sure that you include units in your results.
- Make sure that you label the axis and have units in your plots.
- You are not allowed to use calculators during this exam.
- Turn off your mobile phones, and put away.
- You are not allowed to leave the class during the first 15 minutes, and last 15 minutes.

P102_Index:

1	2	3	4	Total

ExamRoom:	P101_Index:
Student ID Number:	Signature:

1-(25 Points) Two identical point charges with charge Q are positioned a distance d apart. Another point charge q is placed in the middle of the two.

V

q

(d/2,0)

0

> X

(-d/2,0)

Q

c) Is the charge *q* in stable equilibrium? Are the charges *Q* in stable equilibrium? Give your answers by considering a small horizontal displacement of the charge and checking if you get a restoring force.

ExamRoom:	P101_Index:
Student ID Number:	Signature:

2-(25 Points) 2) Four *infinite*, non-conducting planes each with *uniform* surface charge density σ are perpendicular to the *x-y* plane, and they intersect each other to form a square of side 2*a*. An *infinitely long*, non-conducting, thin cylindrical shell of radius *a* is also parallel to the planes (its central axis is the *z* axis). The cylindrical shell has *uniform* surface charge density – σ . You can see the cross section of the charge configuration in the figure, all shapes continue infinitely in the *z* direction.

a) Find the electric field *vector* on the *x* axis for all values of $-\infty < x < \infty$

b) Find the electric field *vector* at the point (x, y) = (3a, 4a)

ExamRoom:	P101_Index:
Student ID Number:	Signature:

3-(25 Points) <u>Answer the following questions. Show your calculations. Unjustified answers will</u> <u>not be given any score. Write your answers in the boxes; answers outside the boxes will not be</u> given any score.

(i) Find the potential at a distance z above the centre of a thin disk of Radius R with uniform charge distribution σ .

(ii) Using the electric field of a uniformly charged solid sphere of radius R and total charge Q, which is given by

$$\vec{E} = \begin{cases} \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \hat{r}, & \text{outside (r>R);} \\ \frac{1}{4\pi\varepsilon_0} \frac{Q}{R^3} r \hat{r}, & \text{inside (r$$

find the potential inside and outside the sphere.

(iii) The potential of a charge distribution is given by $V(x, y, z) = Ax^2y^2 + Bxyz$, where A, B, and C are constants and x, y, and z are the Cartesian coordinates. Find the electric field.

(iv) How much work does it take to assemble a charge configuration where four charges of $q_1=q$, $q_2=q$, $q_3=q$, and $q_4=q$ are located at the corners of

ExamRoom:	P101_Index:
Student ID Number:	Signature:

4-(25 Points) Two concentric spherical conducting shells are separated by vacuum. The inner shell has radius r_a and a total charge +Q, while the outer shell has radius r_b and a total charge -Q.

Give your answers in terms of Q, r_a , r_b , and ε_0 .

a) Calculate the electric-field energy density at a point a distance *r* from the center of the sphere for $r < r_a$, $r_a < r < r_b$, and $r > r_b$.

b) Calculate the total electric field energy associated with the charged spheres.

c) By using $U = Q^2/2C$, calculate the capacitance of the system.

