Name:	Signature:
Surname:	Number:

KOÇ UNIVERSITY
College of Sciences
PHYS 102 General Physics 2
Spring Semester 2017
Midterm Exam 1
March 14, 2017 Thursday, 19:00-20:40

Please read.

- Count to make sure that there are 5 pages in this question booklet
- Check your name, number, on front page, and student ID on each page.
- This examination is conducted with closed books and notes.
- Put all your personal belongings underneath your seat and make sure that pages of books or notebooks are not open.
- Absolutely no talking or exchanging anything (like rulers, erasers) during the exam.
- You must show all your work to get credit; you will not be given any points unless you show the details of your work (this applies even if your final answer is correct).
- Write neatly and clearly; unreadable answers will not be given any credit.
- If you need more writing space, use the backs of the question pages and put down the appropriate pointer marks.
- Make sure that you include units in your results.
- Make sure that you label the axis and have units in your plots.
- You are not allowed to use calculators during this exam.
- Turn off your mobile phones, and put away.
- You are not allowed to leave the class during the first 15 minutes, and last 15 minutes.

P102_Index:

1	2	3	4	Total

ExamRoom:	P101_Index:
Student ID Number:	Signature:

1-(25 Points) Two identical point charges with charge Q are positioned a distance d apart. Another point charge q is placed in the middle of the two.
a) Find the charge q (in terms of Q) if the system is in equilibrium.

b) Assume the charges reside on the x-axis and the charge q is at the origin (see figure). Find the point on the positive y-axis where the electric field is zero.
c) Is the charge q in stable equilibrium? Are the charges Q in stable equilibrium? Give your answers by considering a small horizontal displacement of the charge and checking if you get a restoring force.

ExamRoom:	P101_Index:
Student ID Number:	Signature:

2-(25 Points) 2) Four infinite, non-conducting planes each with uniform surface charge density σ are perpendicular to the $x-y$ plane, and they intersect each other to form a square of side $2 a$. An infinitely long, non-conducting, thin cylindrical shell of radius a is also parallel to the planes (its central axis is the z axis). The cylindrical shell has uniform surface charge density $-\sigma$. You can see the cross section of the charge configuration in the figure, all shapes continue infinitely in the z direction.

a) Find the electric field vector on the x axis for all values of $-\infty<x<\infty$
b) Find the electric field vector at the point $(x, y)=(3 a, 4 a)$

ExamRoom:	P101_Index:
Student ID Number:	Signature:

3-(25 Points) Answer the following questions. Show your calculations. Unjustified answers will not be given any score. Write your answers in the boxes; answers outside the boxes will not be given any score.
(i) Find the potential at a distance z above the centre of a thin disk of Radius R with uniform charge distribution σ.

(ii) Using the electric field of a uniformly charged solid sphere of radius R and total charge Q, which is given by $\vec{E}= \begin{cases}\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}} \hat{r}_{s} & \text { outside }(\mathrm{r}>\mathrm{R}) ; \\ \frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{R^{\mathrm{a}}} r \hat{r}_{s} & \text { inside }(\mathrm{r}<\mathrm{R}),\end{cases}$
find the potential inside and outside the sphere. \square
(iii) The potential of a charge distribution is given by $V(x, y, z)=A x^{2} y^{2}+B x y z$, where A, B, and C are constants and x, y, and z are the Cartesian coordinates. Find the electric field.

(iv) How much work does it take to assemble a charge configuration where four charges of $\mathrm{q}_{1}=\mathrm{q}, \mathrm{q}_{2}=\mathrm{q}, \mathrm{q}_{3}=\mathrm{q}$, and $\mathrm{q}_{4}=\mathrm{q}$ are located at the corners of \square

ExamRoom:	P101_Index:
Student ID Number:	Signature:

4-(25 Points) Two concentric spherical conducting shells are separated by vacuum. The inner shell has radius r_{a} and a total charge $+Q$, while the outer shell has radius r_{b} and a total charge -Q.
Give your answers in terms of Q, r_{a}, r_{b}, and ε_{0}.
a) Calculate the electric-field energy density at a point a distance r from the center of the sphere for $r<r_{a}, r_{a}<r<r_{b}$, and $r>r_{b}$.

b) Calculate the total electric field energy associated with the charged spheres.

c) By using $U=Q^{2} / 2 C$, calculate the capacitance of the system.

