College of Sciences

Section 1

Quiz 5

20 March 2017

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Calculate the current passing through each resistor in the circuit.

at rode
$$A = Z_1 + Z_2 = Z_3$$

1'+ loop: $-V_1 + Z_1 + Z_2 + V_3 = O$

(ii)

2nd loop: $-V_2 + Z_1 + Z_2 + Z_3 + V_3 = O$

(ivi)

72+mg (1) m (14)

$$v_2-v_1+(I_3-I_2)R_1-I_2R_2=0)$$
 / x R3
 $v_3-v_2+I_2R_2+I_3R_3=0$ / x -R1

Putting (I2 in (ii), we obtain \hat{I}_1 $I_1 = \frac{V_1 - V_2}{R_1} + \frac{R_2}{R_1} I_2$ $= \frac{V_1 - V_2}{R_1} + \frac{R_2}{R_1} \frac{V_2(R_1 + R_3) - V_1 R_3 - V_3 R_1}{R_1 R_2 + R_2 R_3 + R_3 R_1}$ $|Re-arrange I_1|$ $I_1 = \frac{V_1 (R_2 + R_3) - V_2 R_3 - V_3 R_2}{R_1 R_2 + R_3 R_1}$ $I_2 = \frac{V_1 (R_2 + R_3) - V_2 R_3 - V_3 R_2}{R_1 R_2 + R_2 R_3 + R_3 R_1}$

In a similar way, southing Iz in (121), we obtain

 $T_3 = \frac{v_3(R_1 + R_2) - v_1R_2 - v_2R_1}{R_1R_2 + R_2R_3 + R_3R_1}$

PHYS 102: General Physics 2

KOÇ UNIVERSITY

Spring Semester 2017

College of Sciences

Section 2

Quiz 5

20 March 2017

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Calculate the current passing through each resistor in the circuit.

at note
$$A: I_1+I_2=I_3$$

at loop (1): $-V_1+I_1R_1+V_3-I_2R_2+V_2=0$ (ii)

at loop (2): $-V_2+I_2R_2+I_3R_3=0$ (iii)

putting (i) m (ii)

$$V_2+V_3-V_1+(\pm_3-I_2)e_1-I_2e_2=0$$
 /x e_3
 $V_2+V_3-V_1+(\pm_3-I_2)e_1-I_2e_2=0$ /x e_3
 $V_2+V_3-V_1+(\pm_3-I_2)e_1-I_2e_2=0$ /x e_3

Putting Iz in (ii) , we obtain

$$T_1 = \frac{V_1 - V_2 - V_3}{R_1} + \frac{R_2}{R_1} T_2$$
 $= \frac{(V_1 - V_3)(R_2 + R_3)}{R_1 R_2 + R_2 R_3 + R_3 R_1}$

and putting T_2 on (iii)

 $T_3 = \frac{V_1}{R_3} - \frac{R_2}{R_3} T_2$

I3 = = (V1-V3) 12- V2R1 R1R2+R2R3+R3R1 PHYS 102: General Physics 2

KOÇ UNIVERSITY

Spring Semester 2017

College of Sciences

Section 3

Quiz 5

20 March 2017

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A capacitor of capacitance C₁ carries charge Q₀ with polarization as given in the figure. It is connected to a resistor and another capacitor of capacitance C₂ with no initial charge. Find the charge on each capacitor as a function of time if we close the switch at t=0.

R

$$C_{2}$$
 (t)

 C_{1}
 C_{1}
 C_{2} (t)

 C_{1}
 C_{1}
 C_{2}
 C_{2} (t)

 C_{1}
 C_{2}
 C_{3}
 C_{4}
 C_{2}
 C_{4}
 C_{5}
 C_{6}
 C_{1}
 C_{1}
 C_{2}
 C_{1}
 C_{2}
 C_{2}
 C_{3}
 C_{4}
 C_{5}
 C_{6}
 C_{1}
 C_{2}
 C_{1}
 C_{2}
 C_{2}
 C_{3}
 C_{4}
 C_{5}
 C_{6}
 C_{7}
 C_{1}
 C_{1}
 C_{2}
 C_{2}
 C_{3}
 C_{4}
 C_{5}
 C_{6}
 C_{7}
 C_{1}
 C_{1}
 C_{2}
 C_{1}
 C_{2}
 C_{2}
 C_{3}
 C_{4}
 C_{5}
 C_{7}
 C_{1}
 C_{1}
 C_{2}
 C_{2}
 C_{3}
 C_{4}
 C_{5}
 C_{7}
 C_{1}
 C_{1}
 C_{2}
 C_{1}
 C_{2}
 C_{1}
 C_{2}
 C_{2}
 C_{3}
 C_{4}
 C_{5}
 C_{5}
 C_{7}
 C_{1}
 C_{1}
 C_{2}
 C_{2}
 C_{3}
 C_{4}
 C_{5}
 C_{5}
 C_{7}
 C_{7

$$\frac{10}{dt} = \frac{1}{R(eq)} \left(0 - E(eq) = \right) \int_{0}^{\infty} \frac{10^{2} - E(eq)}{10^{2} - E(eq)} \int_{0}^{\infty} \frac{10^{2} - E(eq)}{10^{2} - E(eq)} dt$$

$$\frac{10}{10^{2} - E(eq)} = \frac{1}{R(eq)} \int_{0}^{\infty} \frac{10^{2} - E(eq)}{10^{2} - E(eq)} dt$$

$$\frac{10}{10^{2} - E(eq)} = \frac{10^{2} - E(eq)}{10^{2} - E(eq)$$

$$\mathcal{I}(t) = \frac{\partial \mathcal{O}}{\partial t} = \frac{\partial \mathcal{O}(eq)}{\partial t} \left(\frac{1}{eeq} \right) e^{-t/2eq}$$

$$\mathcal{I}(t) = \frac{\partial \mathcal{O}}{\partial t} = \frac{\partial \mathcal{O}(eq)}{\partial t} \left(\frac{1}{eeq} \right) e^{-t/2eq}$$

$$\mathcal{I}(t) = \frac{\partial \mathcal{O}(eq)}{\partial t} = \frac{\partial \mathcal{O}(eq)}{\partial t} e^{-t/2eq}$$

PHYS 102: General Physics 2

KOÇ UNIVERSITY

Spring Semester 2017

College of Sciences

Section 4

Quiz 5

21 March 2017

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A capacitor of capacitance C carries charge Qo with polarization as given in the figure. It is connected to a battery and a resistor, and the switch is closed at t=0. Find the charge on the capacitor and the current in the circuit as functions of time.

$$R$$

$$-V + \pm R + C = 0$$

$$-V + \pm R + C = 0$$

$$-V + \frac{dQ}{dt} = + \frac{1}{C} = 0$$

$$\frac{dQ}{dt} + \frac{1}{C} = 0 \Rightarrow \frac{dQ}{dt} = -\frac{1}{C} (Q + VC)$$

$$\frac{dQ}{dt} + \frac{1}{C} = 0 \Rightarrow \frac{dQ}{dt} = -\frac{1}{C} (Q + VC)$$

$$\frac{dQ}{dt} = \int_{-RC}^{t} \frac{dE'}{RC} \Rightarrow \ln\left(\frac{Q + VC}{Q_0 + VC}\right) = -\frac{t}{C}$$

$$Q(t) = Q_0 e^{-t/RC} = VC (1 - e^{-t/RC})$$

$$I(t) = \frac{dO(t)}{dt}$$

$$= -\frac{Oo}{EC} e^{-t/EC}$$

$$= -\frac{VC - Oo}{EC} e^{-t/EC}$$

$$I(t) = (-\frac{VC - Oo}{EC}) e^{-t/EC}$$